Download Applications of Genetic and Genomic Research in Cereals Ebook PDF

Applications of Genetic and Genomic Research in Cereals

Applications of Genetic and Genomic Research in Cereals
A Book

by Thomas Miedaner,Viktor Korzun

  • Publisher : Woodhead Publishing
  • Release : 2018-11-19
  • Pages : 380
  • ISBN : 0081022131
  • Language : En, Es, Fr & De
GET BOOK

Applications of Genetic and Genomic Research in Cereals covers new techniques for practical breeding, also discussing genetic and genomic approaches for improving special traits. Additional sections cover drought tolerance, biotic stress, biomass production, the impact of modern techniques on practical breeding, hybrid breeding, genetic diversity, and genomic selection. Written by an international team of top academics and edited by an expert in the field, this book will be of value to academics working in the agricultural sciences and essential reading for professionals working in plant breeding. Provides in-depth and comprehensive coverage of a rapidly developing field Presents techniques used in genetic and genomics research, with coverage of genotyping, gene cloning, genome editing and engineering and phenotyping in various cereals Includes the latest genetic and genomic approaches for improving special traits - drought tolerance, biotic stress and biomass production Covers breeding practices, with chapters on the genetic diversity of wheat, hybrid breeding and the potential of rye and barley crops

Genetics and Genomics of the Triticeae

Genetics and Genomics of the Triticeae
A Book

by Catherine Feuillet,Gary J. Muehlbauer

  • Publisher : Springer Science & Business Media
  • Release : 2009-06-10
  • Pages : 700
  • ISBN : 9780387774893
  • Language : En, Es, Fr & De
GET BOOK

Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related

Genetics and Genomics of the Triticeae

Genetics and Genomics of the Triticeae
A Book

by Catherine Feuillet,Gary J. Muehlbauer

  • Publisher : Springer
  • Release : 2009-07-20
  • Pages : 700
  • ISBN : 9780387774886
  • Language : En, Es, Fr & De
GET BOOK

Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related

Genetic and Genomic Resources for Grain Cereals Improvement

Genetic and Genomic Resources for Grain Cereals Improvement
A Book

by Mohar Singh,Hari D. Upadhyaya

  • Publisher : Academic Press
  • Release : 2015-11-10
  • Pages : 384
  • ISBN : 0128020377
  • Language : En, Es, Fr & De
GET BOOK

Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. Provides a single-volume resource on the global research work on grain cereals genetics and genomics Presents information for effectively managing and utilizing the genetic resources of this core food supply source Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets

Genetic Engineering

Genetic Engineering
An Insight into the Strategies and Applications

by Farrukh Jamal

  • Publisher : BoD – Books on Demand
  • Release : 2016-12-14
  • Pages : 94
  • ISBN : 9535128353
  • Language : En, Es, Fr & De
GET BOOK

This collection presents various interesting aspects of genetic engineering. Many thought-provoking queries like "Is gene revolution an answer to the world hunger? Do GM crops with more complex transformation contribute to the enrichment of multinationals? Why the US increases food aids?" have been analyzed. Transformation protocols and retrieval of recombinants are essential to the success of genetic engineering. The book throws light on new transformation strategies which can be used to increase the transformation efficiency in most plant species. Genetic engineering offers potentially viable solution to look for alternatives beyond Bt toxins with similar pattern of toxicity. An interesting chapter is dedicated to in vitro fig regeneration and transformation systems. To address the long juvenile phase of fruit trees, the book includes a chapter on plant breeding technique that can significantly shorten the breeding periods. The book dwells on aspects of genome editing which will enable researchers to produce transgenic plants in a more convenient and safer way to genetic modification of stem cells holding significant therapeutic promise to treat complications of diabetes and obesity. I hope this book will serve as a seed for further investigations and novel innovations in the area of genetic engineering.

Cereal Genomics

Cereal Genomics
A Book

by Pushpendra K. Gupta,R.K. Varshney

  • Publisher : Springer Science & Business Media
  • Release : 2006-01-26
  • Pages : 639
  • ISBN : 1402023596
  • Language : En, Es, Fr & De
GET BOOK

Cereals make an important component of daily diet of a major section of human population, so that their survival mainly depends on the cereal grain production, which should match the burgeoning human population. Due to painstaking efforts of plant breeders and geneticists, at the global level, cereal production in the past witnessed a steady growth. However, the cereal production in the past has been achieved through the use of high yielding varieties, which have a heavy demand of inputs in the form of chemical fertilizers, herbicides and insecticides/pesticides, leading to environmental degradation. In view of this, while increasing cereal production, one also needs to keep in mind that agronomic practices used for realizing high productivity do not adversely affect the environment. Improvement in cereal production in the past was also achieved through the use of alien genetic variation available in the wild relatives of these cereals, so that conservation and sustainable use of genetic resources is another important area, which is currently receiving the attention of plant breeders. The work leading to increased cereal production in the past received strong support from basic research on understanding the cereal genomes, which need to be manipulated to yield more from low inputs without any adverse effects as above. Through these basic studies, it also became fairly apparent that the genomes of all cereals are related and were derived from the same lineage, million of years ago.

OMICS Applications in Crop Science

OMICS Applications in Crop Science
A Book

by Debmalya Barh

  • Publisher : CRC Press
  • Release : 2013-12-16
  • Pages : 719
  • ISBN : 1466585315
  • Language : En, Es, Fr & De
GET BOOK

Merging topical data from recently published review and research articles, as well as the knowledge and insight of industry experts, Omics Applications in Crop Science delves into plant science, and various technologies that use omics in agriculture. This book concentrates on crop breeding and environmental applications, and examines the applicatio

Cereal Genomics

Cereal Genomics
A Book

by P. K. Gupta,R.K. Varshney

  • Publisher : Springer Science & Business Media
  • Release : 2004-12-20
  • Pages : 639
  • ISBN : 9781402023583
  • Language : En, Es, Fr & De
GET BOOK

This book is the first of its kind, where twenty chapters written by experts of international repute, cover all aspects of cereal genomics research. In recent years genomics has become a thrust area of research in life sciences, and cereals, being the most important group of crops, their genomes have been subjected to intensive/extensive analyses. The knowledge and the products generated through cereal genomics research are already being used for plant breeding through both, the marker assisted selection (MAS) and transgenic cereals. The areas covered in this book include, development and use of all kinds of molecular markers (including SNPs), construction and use of molecular maps, study of population genetics and domestication of cereals using tools of genomics research, structural and functional genomics (including whole genome sequencing in Arabidopsis and rice), comparative genomics, QTLs (including epistatic and e-QTLs) and genes for resistance against biotic and abiotic stresses, marker assisted selection (MAS), map-based cloning of genes/QTLs and the use of genomics research for crop improvement. The book, therefore, should prove useful not only for students and teachers, but also for the young research workers, who are starting their research career in the field of cereal genomics.

Plant Genomics

Plant Genomics
A Book

by Ibrokhim Y. Abdurakhmonov

  • Publisher : BoD – Books on Demand
  • Release : 2016-07-14
  • Pages : 310
  • ISBN : 9535124552
  • Language : En, Es, Fr & De
GET BOOK

Plant genomics aims to sequence, characterize, and study the genetic compositions, structures, organizations, functions, and interactions/networks of an entire plant genome. Its development and advances are tightly interconnected with proteomics, metabolomics, metagenomics, transgenomics, genomic selection, bioinformatics, epigenomics, phenomics, system biology, modern instrumentation, and robotics sciences. Plant genomics has significantly advanced over the past three decades in the land of inexpensive, high-throughput sequencing technologies and fully sequenced over 100 plant genomes. These advances have broad implications in every aspect of plant biology and breeding, powered with novel genomic selection and manipulation tools while generating many grand challenges and tasks ahead. This Plant genomics provides some updated discussions on current advances, challenges, and future perspectives of plant genome studies and applications.

Genetics and Genomics of Rosaceae

Genetics and Genomics of Rosaceae
A Book

by Kevin M. Folta,Susan E. Gardiner

  • Publisher : Springer Science & Business Media
  • Release : 2009-05-28
  • Pages : 636
  • ISBN : 9780387774916
  • Language : En, Es, Fr & De
GET BOOK

This is the first book on Rosaceae genomics. It covers progress in recent genomic research among the Rosaceae, grounding this firmly in the historical context of genetic studies and in the application of genomics technologies for crop development.

Cereal Genomics II

Cereal Genomics II
A Book

by Pushpendra K. Gupta,Rajeev Varshney

  • Publisher : Springer Science & Business Media
  • Release : 2013-05-29
  • Pages : 438
  • ISBN : 9400764014
  • Language : En, Es, Fr & De
GET BOOK

“Cereal Genomics” published in 2004 served the purpose of collecting all information on cereal genomics at one place and was well received by the cereal workers through-out the world. The last eight years have witnessed significant advancement in the field of cereal genomics. For instance, high-density genetic maps, physical maps, QTL maps and even draft genome sequence have become available for several cereal species. Furthermore, the next generation sequencing (NGS) technologies have revolutionized genomics research, so that it is possible now to sequence genomes of hundreds or thousands of accessions of an individual cereal crop. Significant amounts of data generated using these NGS technologies created a demand for computational tools to analyse this massive data. In view of these developments, the Editors realised that there was a need to have an updated volume on the present status and future prospects of cereal genomics. These developments related to technology and the tools have been documented in this volume, thus supplementing our earlier edited volume “Cereal Genomics”. “Cereal Genomics II” discusses advances in cereal genomics research made during the last eight years, and presents state-of-art cereal genomics and its utilization involving both basic research such as comparative genomics and functional genomics, and applied research like QTL mapping and molecular breeding.

Biotechnology of Major Cereals

Biotechnology of Major Cereals
A Book

by Huw D Jones

  • Publisher : CABI
  • Release : 2016-09-30
  • Pages : 244
  • ISBN : 1780645198
  • Language : En, Es, Fr & De
GET BOOK

Biotechnology of Major Cereals will focus on the recent advances and future prospects in cereal biotechnology. The first part of the book will cover the world’s major cereals and focus on new developments and trends. The second part will be technology rather than species-led, detailing fundamental developments in technologies and significant target traits.

Advances in Plant Breeding Strategies: Cereals

Advances in Plant Breeding Strategies: Cereals
A Book

by Jameel M. Al-Khayri,Shri Mohan Jain,Dennis V. Johnson

  • Publisher : Springer Nature
  • Release : 2019-11-14
  • Pages : 603
  • ISBN : 3030231089
  • Language : En, Es, Fr & De
GET BOOK

This book examines the development of innovative modern methodologies towards augmenting conventional plant breeding, in individual crops, for the production of new crop varieties under the increasingly limiting environmental and cultivation factors to achieve sustainable agricultural production, enhanced food security, in addition to providing raw materials for innovative industrial products and pharmaceuticals. This Volume 5, subtitled Cereals, focuses on advances in breeding strategies using both traditional and modern approaches for the improvement of individual crops. It addresses important staple food crops including barley, fonio, finger millet, foxtail millet, pearl millet, proso millet, quinoa, rice, rye, tef, triticale and spelt wheat. The volume is contributed by 53 internationally reputable scientists from 14 countries. Each chapter comprehensively reviews the modern literature on the subject and reflects the authors own experience.

Rice Genetics IV

Rice Genetics IV
A Book

by Gurdev S. Khush,D. S. Brar,Bill Hardy

  • Publisher : Int. Rice Res. Inst.
  • Release : 2001
  • Pages : 488
  • ISBN : 157808167X
  • Language : En, Es, Fr & De
GET BOOK

Geneticists contribute on a wide range of topics in this book, from classical genetics to the most advanced research on sequencing of the rice genome and functional genomics. They review advances in rice research and discuss molecular markers, genome organization and gene isolation.

Genetics and Genomics of Pineapple

Genetics and Genomics of Pineapple
A Book

by Ray Ming

  • Publisher : Springer
  • Release : 2018-11-27
  • Pages : 281
  • ISBN : 303000614X
  • Language : En, Es, Fr & De
GET BOOK

This book is the first comprehensive volume on the genetics and genomics of pineapple and provides an overview of the current state of pineapple research. Pineapple [Ananas comosus (L.) Merr.] is the second most important tropical fruit after banana in term of international trade. Its features are advantageous for genomic research: it has a small genome of 527 Mb which is diploid and vegetatively propagated; it is monocot, closely related to the grass family that includes major cereal crops, wheat, rice, corn, sorghum, and millet; and it serves as an out group for genetic and genomic research in grasses. In addition to exploring the evolution and improvement of pineapple, this work examines the pineapple genome with respect to genome structure and organization, comparative analyses with other angiosperm genomes, transcription factors, disease resistance, and circadian clock regulation of CAM related genes. With chapters covering botanical, genetic, genomic, and applied aspects of pineapple, this text also encourages the application of genomic technologies and suggests future prospects.

Rice Biotechnology

Rice Biotechnology
Improving Yield, Stress Tolerance and Grain Quality

by Jamie A. Goode,Derek J. Chadwick

  • Publisher : John Wiley & Sons
  • Release : 2008-04-30
  • Pages : 272
  • ISBN : 0470515783
  • Language : En, Es, Fr & De
GET BOOK

Rice is the most important food crop for half the world's population. Over the last three decades, the imporvement in human nutrition and health in Asia has largely been attributable to a relatively stable and affordable rice supply. The challenge to produce enough rice for the future, however, remains daunting, as the current rate of population growth outpaces that of increases in rice production. Science has a central role to play in raising rice productivity and this book highlights areas of plant science that are particularly relevant to solving the major constraints on rice production. Examining molecular, genetic and cellular techniques, it considers recent advances in four research approaches for increasing yields and improving the nutritional quality of rice. Plant genomics: knowing the identity and location of each gene in the rice genome is of immense value in all aspects of rice science and cultivar improvement. Molecular biological approaches to increase yield: to produce more biomass by increasing photosynthetic rate and duration, and by improving grain filling. Enhancing tolerance to biotic and abiotic stresses: with new DNA array technologies, it is now possible to assess global genomic response to stresses. Understanding the relationships among stress pathways may create new opportunities for gene manipulation to enhance tolerance to multiple biotic and abiotic stresses. Improving nutritional quality in the grain: knowledge of the biosynthesis of micronutrients in plants permits genetic engineering of metabolic pathways to enhance the availability of micronutrients.

Genomics-Assisted Crop Improvement

Genomics-Assisted Crop Improvement
Vol 1: Genomics Approaches and Platforms

by R.K. Varshney,Roberto Tuberosa

  • Publisher : Springer Science & Business Media
  • Release : 2007-12-12
  • Pages : 386
  • ISBN : 1402062958
  • Language : En, Es, Fr & De
GET BOOK

This superb volume provides a critical assessment of genomics tools and approaches for crop breeding. Volume 1 presents the status and availability of genomic resources and platforms, and also devises strategies and approaches for effectively exploiting genomics research. Volume 2 goes into detail on a number of case studies of several important crop and plant species that summarize both the achievements and limitations of genomics research for crop improvement.

Genetics and Genomics of Rice

Genetics and Genomics of Rice
A Book

by Qifa Zhang,Rod A. Wing

  • Publisher : Springer Science & Business Media
  • Release : 2013-08-21
  • Pages : 402
  • ISBN : 1461479037
  • Language : En, Es, Fr & De
GET BOOK

This book provides a comprehensive coverage of the advances in genetics and genomics research on rice. The chapters feature the latest developments in rice research and cover such topics as the tools and resources for the functional analysis of rice genes, the identification of useful genes for rice improvement, the present understanding of rice development and biological processes, and the application of this present understanding towards rice improvement. The volume also features a perspective on synthesis and prospects, laying the groundwork for future advances in rice genetics and genomics. Written by authorities in the field, Genetics and Genomics of Rice will serve as an invaluable reference for rice researchers for years to come.

Genetic and Genomic Resources of Grain Legume Improvement

Genetic and Genomic Resources of Grain Legume Improvement
A Book

by Mohar Singh,Hari D. Upadhyaya,I. S. Bisht

  • Publisher : Newnes
  • Release : 2013-07-18
  • Pages : 322
  • ISBN : 0123984947
  • Language : En, Es, Fr & De
GET BOOK

Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. Explores origin, distribution and diversity of grain legumes Presents information on germplasm collection, evaluation and maintenance Offers insight into pre-breeding/germplasm enhancement efforts Integrates genomic and genetic resources in crop improvement Internationally contributed work

Rice Functional Genomics

Rice Functional Genomics
Challenges, Progress and Prospects

by Narayana M. Upadhyaya

  • Publisher : Springer Science & Business Media
  • Release : 2007-05-19
  • Pages : 500
  • ISBN : 0387489142
  • Language : En, Es, Fr & De
GET BOOK

Rice has been chosen as a model cereal for functional genomics because of its well understood genetics. In addition, there is great similarities among all the cereals and grasses: any understanding of rice genes is directly applicable to the genes of other cereals. This book details rice functional genomics. It takes a multi-pronged genome-wide approach using structural similarities, expression profiles, and mutant phenotypes. Coverage includes the current status of genome sequencing and annotation, various tools, and resources being developed worldwide.