Download Computability Theory Ebook PDF

Computability Theory

Computability Theory
A Book

by Rebecca Weber

  • Publisher : American Mathematical Soc.
  • Release : 2012
  • Pages : 203
  • ISBN : 082187392X
  • Language : En, Es, Fr & De
GET BOOK

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

The Foundations of Computability Theory

The Foundations of Computability Theory
A Book

by Borut Robič

  • Publisher : Springer
  • Release : 2015-09-14
  • Pages : 331
  • ISBN : 3662448084
  • Language : En, Es, Fr & De
GET BOOK

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Computability Theory

Computability Theory
An Introduction to Recursion Theory

by Herbert B. Enderton

  • Publisher : Academic Press
  • Release : 2010-12-30
  • Pages : 192
  • ISBN : 9780123849595
  • Language : En, Es, Fr & De
GET BOOK

Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory

Turing Computability

Turing Computability
Theory and Applications

by Robert I. Soare

  • Publisher : Springer
  • Release : 2016-06-20
  • Pages : 263
  • ISBN : 3642319335
  • Language : En, Es, Fr & De
GET BOOK

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.

Computability Theory

Computability Theory
A Book

by S. Barry Cooper

  • Publisher : CRC Press
  • Release : 2017-09-06
  • Pages : 420
  • ISBN : 1351991965
  • Language : En, Es, Fr & De
GET BOOK

Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.

Computability

Computability
An Introduction to Recursive Function Theory

by Nigel Cutland

  • Publisher : Cambridge University Press
  • Release : 1980-06-19
  • Pages : 251
  • ISBN : 9780521294652
  • Language : En, Es, Fr & De
GET BOOK

What can computers do in principle? What are their inherent theoretical limitations? The theoretical framework which enables such questions to be answered has been developed over the last fifty years from the idea of a computable function - a function whose values can be calculated in an automatic way.

Models of Computation

Models of Computation
An Introduction to Computability Theory

by Maribel Fernandez

  • Publisher : Springer Science & Business Media
  • Release : 2009-04-14
  • Pages : 184
  • ISBN : 9781848824348
  • Language : En, Es, Fr & De
GET BOOK

A Concise Introduction to Computation Models and Computability Theory provides an introduction to the essential concepts in computability, using several models of computation, from the standard Turing Machines and Recursive Functions, to the modern computation models inspired by quantum physics. An in-depth analysis of the basic concepts underlying each model of computation is provided. Divided into two parts, the first highlights the traditional computation models used in the first studies on computability: - Automata and Turing Machines; - Recursive functions and the Lambda-Calculus; - Logic-based computation models. and the second part covers object-oriented and interaction-based models. There is also a chapter on concurrency, and a final chapter on emergent computation models inspired by quantum mechanics. At the end of each chapter there is a discussion on the use of computation models in the design of programming languages.

Computability Theory

Computability Theory
An Introduction

by Neil D. Jones

  • Publisher : Academic Press
  • Release : 2014-06-20
  • Pages : 168
  • ISBN : 1483218481
  • Language : En, Es, Fr & De
GET BOOK

Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.

Computability Theory and Its Applications

Computability Theory and Its Applications
Current Trends and Open Problems : Proceedings of a 1999 AMS-IMS-SIAM Joint Summer Research Conference, Computability Theory and Applications, June 13-17, 1999, University of Colorado, Boulder

by Peter Cholak,Steffen Lempp,Manuel Lerman,Richard A. Shore

  • Publisher : American Mathematical Soc.
  • Release : 2000
  • Pages : 320
  • ISBN : 0821819224
  • Language : En, Es, Fr & De
GET BOOK

This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM Joint Summer Conference on Computability Theory and Applications held at the University of Colorado (Boulder). The conference focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role.Some presentations are narrowly focused; others cover a wider area. Topics included from 'pure' computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P. Cholak, R. Soare), definability issues in the c.e. and Turing degrees (A. Nies, R. Shore) and other degree structures (M. Arslanov, S. Badaev and S. Goncharov, P. Odifreddi, A. Sorbi). The topics involving relations between computability and other areas of logic and mathematics are reverse mathematics and proof theory (D. Cenzer and C. Jockusch, C. Chong and Y. Yang, H. Friedman and S. Simpson), set theory (R. Dougherty and A. Kechris, M. Groszek, T. Slaman) and computable mathematics and model theory (K. Ambos-Spies and A. Kucera, R. Downey and J. Remmel, S. Goncharov and B. Khoussainov, J. Knight, M. Peretyat'kin, A. Shlapentokh).

The Foundations of Computability Theory

The Foundations of Computability Theory
A Book

by Borut Robič

  • Publisher : Unknown Publisher
  • Release : 2020
  • Pages : 422
  • ISBN : 3662624214
  • Language : En, Es, Fr & De
GET BOOK

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.

Handbook of Computability Theory

Handbook of Computability Theory
A Book

by E.R. Griffor

  • Publisher : Elsevier
  • Release : 1999-10-01
  • Pages : 724
  • ISBN : 9780080533049
  • Language : En, Es, Fr & De
GET BOOK

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

Logic, Foundations of Mathematics, and Computability Theory

Logic, Foundations of Mathematics, and Computability Theory
Part One of the Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, Canada-1975

by Robert E. Butts,Jaakko Hintikka

  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • Pages : 416
  • ISBN : 9401011389
  • Language : En, Es, Fr & De
GET BOOK

The Fifth International Congress of Logic, Methodology and Philosophy of Science was held at the University of Western Ontario, London, Canada, 27 August to 2 September 1975. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science, and was sponsored by the National Research Council of Canada and the University of Western Ontario. As those associated closely with the work of the Division over the years know well, the work undertaken by its members varies greatly and spans a number of fields not always obviously related. In addition, the volume of work done by first rate scholars and scientists in the various fields of the Division has risen enormously. For these and related reasons it seemed to the editors chosen by the Divisional officers that the usual format of publishing the proceedings of the Congress be abandoned in favour of a somewhat more flexible, and hopefully acceptable, method of pre sentation. Accordingly, the work of the invited participants to the Congress has been divided into four volumes appearing in the University of Western Ontario Series in Philosophy of Science. The volumes are entitled, Logic, Foundations of Mathematics and Computability Theory, Foun dational Problems in the Special Sciences, Basic Problems in Methodol ogy and Linguistics, and Historical and Philosophical Dimensions of Logic, Methodology and Philosophy of Science.

Computability Theory

Computability Theory
Concepts and Applications

by Paul E. Dunne

  • Publisher : Prentice Hall
  • Release : 1991
  • Pages : 150
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

A review of computability theory which determines problems that cannot be solved by existing computer programs. The book concentrates on the presentation of basic concepts as opposed to the formal mathematical aspects.

Reflexive Structures

Reflexive Structures
An Introduction to Computability Theory

by Luis E. Sanchis

  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • Pages : 233
  • ISBN : 1461238781
  • Language : En, Es, Fr & De
GET BOOK

Reflexive Structures: An Introduction to Computability Theory is concerned with the foundations of the theory of recursive functions. The approach taken presents the fundamental structures in a fairly general setting, but avoiding the introduction of abstract axiomatic domains. Natural numbers and numerical functions are considered exclusively, which results in a concrete theory conceptually organized around Church's thesis. The book develops the important structures in recursive function theory: closure properties, reflexivity, enumeration, and hyperenumeration. Of particular interest is the treatment of recursion, which is considered from two different points of view: via the minimal fixed point theory of continuous transformations, and via the well known stack algorithm. Reflexive Structures is intended as an introduction to the general theory of computability. It can be used as a text or reference in senior undergraduate and first year graduate level classes in computer science or mathematics.

Computability and Complexity Theory

Computability and Complexity Theory
A Book

by Steven Homer,Alan L. Selman

  • Publisher : Springer Science & Business Media
  • Release : 2011-12-09
  • Pages : 300
  • ISBN : 1461406811
  • Language : En, Es, Fr & De
GET BOOK

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes

Theories of Computability

Theories of Computability
A Book

by Nicholas Pippenger

  • Publisher : Cambridge University Press
  • Release : 1997-05-28
  • Pages : 251
  • ISBN : 9780521553803
  • Language : En, Es, Fr & De
GET BOOK

A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.

Computability

Computability
A Mathematical Sketchbook

by Douglas S. Bridges

  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • Pages : 180
  • ISBN : 1461208637
  • Language : En, Es, Fr & De
GET BOOK

Aimed at mathematicians and computer scientists who will only be exposed to one course in this area, Computability: A Mathematical Sketchbook provides a brief but rigorous introduction to the abstract theory of computation, sometimes also referred to as recursion theory. It develops major themes in computability theory, such as Rice's theorem and the recursion theorem, and provides a systematic account of Blum's complexity theory as well as an introduction to the theory of computable real numbers and functions. The book is intended as a university text, but it may also be used for self-study; appropriate exercises and solutions are included.

Computability Theory, Semantics, and Logic Programming

Computability Theory, Semantics, and Logic Programming
A Book

by Melvin Fitting,Department of Mathematics and Computer Science Lehman College Melvin Fitting

  • Publisher : Oxford University Press, USA
  • Release : 1987
  • Pages : 198
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

This book describes computability theory and provides an extensive treatment of data structures and program correctness. It makes accessible some of the author's work on generalized recursion theory, particularly the material on the logic programming language PROLOG, which is currently of great interest. Fitting considers the relation of PROLOG logic programming to the LISP type of language.

Computable Structure Theory

Computable Structure Theory
Within the Arithmetic

by Antonio Montalbán

  • Publisher : Cambridge University Press
  • Release : 2021-06-24
  • Pages : 129
  • ISBN : 1108534422
  • Language : En, Es, Fr & De
GET BOOK

In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.

Higher-Order Computability

Higher-Order Computability
A Book

by John Longley,Dag Normann

  • Publisher : Springer
  • Release : 2015-11-06
  • Pages : 571
  • ISBN : 3662479923
  • Language : En, Es, Fr & De
GET BOOK

This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers