Download Computational Interval Methods for Engineering Applications Ebook PDF

Computational Interval Methods for Engineering Applications

Computational Interval Methods for Engineering Applications
A Book

by Snehashish Chakraverty,Nisha Rani Mahato

  • Publisher : Academic Press
  • Release : 2020-11-01
  • Pages : 220
  • ISBN : 0128178590
  • Language : En, Es, Fr & De
GET BOOK

Computational Interval Methods for Engineering Applications explains how to use classical and advanced interval arithmetic to solve differential equations for a wide range of scientific and engineering problems. In mathematical models where there are variables and parameters of uncertain value, interval methods can be used as an efficient tool for handling this uncertainty. In addition, it can produce rigorous enclosures of solutions of practical problems governed by mathematical equations. Other topics discussed in the book include linear differential equations in areas such as robotics, control theory, and structural dynamics, and in nonlinear oscillators, such as Duffing and Van der Pol. The chaotic behavior of the enclosure of oscillators is also covered, as are static and dynamic analysis of engineering problems using the interval system of linear equations and eigenvalue problems, thus making this a comprehensive resource. Explains how interval arithmetic can be used to solve problems in a range of engineering disciplines, including structural and control Gives unique, comprehensive coverage of traditional and innovative interval techniques, with examples addressing both linear and nonlinear differential equations Provides full mathematical details of the governing differential equations used to solve a wide range of problems

Wavelet Numerical Method and Its Applications in Nonlinear Problems

Wavelet Numerical Method and Its Applications in Nonlinear Problems
A Book

by You-He Zhou

  • Publisher : Springer Nature
  • Release : 2021
  • Pages : 329
  • ISBN : 9813366435
  • Language : En, Es, Fr & De
GET BOOK

Numerical Methods for Engineering Applications

Numerical Methods for Engineering Applications
A Book

by Joel H. Ferziger

  • Publisher : Wiley-Interscience
  • Release : 1998-04-17
  • Pages : 378
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

State-of-the-art numerical methods for solving complex engineering problems Great strides in computer technology have been made in the years since the popular first edition of this book was published. Several excellent software packages now help engineers solve complex problems. Making the most of these programs requires a working knowledge of the numerical methods on which the programs are based. Numerical Methods for Engineering Application provides that knowledge. While it avoids intense mathematical detail, Numerical Methods for Engineering Application supplies more in-depth explanations of methods than found in the typical engineer's numerical "cookbook." It offers complete coverage of most commonly encountered algebraic, interpolation, and integration problems. Ordinary differential equations are examined in great detail, as are three common types of partial differential equations--parabolic, elliptic, and hyperbolic. The author also explores a wide range of methods for solving initial and boundary value problems. This complete guide to numerical methods for solving engineering problems on computers provides: * Practical advice on how to select the best method for a given problem * Valuable insights into how each method works and why it is the best choice * Complete algorithms and source code for all programs covered * Code from the book and problem-solving programs designed by the author available from the author's website Numerical Methods for Engineering Application is a valuable working resource for engineers and applied physicists. It also serves as an excellent upper-level text for physics and engineering students in courses on modern numerical methods.

Computational Methods in Engineering and Science

Computational Methods in Engineering and Science
With Applications to Fluid Dynamics and Nuclear Systems

by Shoichiro Nakamura

  • Publisher : Unknown Publisher
  • Release : 1977
  • Pages : 457
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Computer Methods for Engineering with MATLAB® Applications, Second Edition

Computer Methods for Engineering with MATLAB® Applications, Second Edition
A Book

by Yogesh Jaluria

  • Publisher : CRC Press
  • Release : 2011-09-08
  • Pages : 631
  • ISBN : 1591690366
  • Language : En, Es, Fr & De
GET BOOK

Substantially revised and updated, Computer Methods for Engineering with MATLAB® Applications, Second Edition presents equations to describe engineering processes and systems. It includes computer methods for solving these equations and discusses the nature and validity of the numerical results for a variety of engineering problems. This edition now uses MATLAB in its discussions of computer solution. New to the Second Edition Recent advances in computational software and hardware A large number of MATLAB commands and programs for solving exercises and to encourage students to develop their own computer programs for specific problems Additional exercises and examples in all chapters New and updated references The text follows a systematic approach for obtaining physically realistic, valid, and accurate results through numerical modeling. It employs examples from many engineering areas to explain the elements involved in the numerical solution and make the presentation relevant and interesting. It also incorporates a wealth of solved exercises to supplement the discussion and illustrate the ideas and methods presented. The book shows how a computational approach can provide physical insight and obtain inputs for the analysis and design of practical engineering systems.

Scientific Computing, Validated Numerics, Interval Methods

Scientific Computing, Validated Numerics, Interval Methods
A Book

by Walter Krämer,Jürgen Wolff von Gudenberg

  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • Pages : 398
  • ISBN : 1475764847
  • Language : En, Es, Fr & De
GET BOOK

Scan 2000, the GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19-22, 2000. The joint conference continued the series of 7 previous Scan-symposia under the joint sponsorship of GAMM and IMACS. These conferences have traditionally covered the numerical and algorithmic aspects of scientific computing, with a strong emphasis on validation and verification of computed results as well as on arithmetic, programming, and algorithmic tools for this purpose. The conference further continued the series of 4 former Interval conferences focusing on interval methods and their application in science and engineering. The objectives are to propagate current applications and research as well as to promote a greater understanding and increased awareness of the subject matters. The symposium was held in Karlsruhe the European cradle of interval arithmetic and self-validating numerics and attracted 193 researchers from 33 countries. 12 invited and 153 contributed talks were given. But not only the quantity was overwhelming we were deeply impressed by the emerging maturity of our discipline. There were many talks discussing a wide variety of serious applications stretching all parts of mathematical modelling. New efficient, publicly available or even commercial tools were proposed or presented, and also foundations of the theory of intervals and reliable computations were considerably strengthened.

Numerical Methods for Chemical Engineering

Numerical Methods for Chemical Engineering
Applications in MATLAB

by Kenneth J Beers,Kenneth J. Beers

  • Publisher : Cambridge University Press
  • Release : 2007
  • Pages : 474
  • ISBN : 9780521859714
  • Language : En, Es, Fr & De
GET BOOK

Applications of numerical mathematics and scientific computing to chemical engineering.

Theories of Interval Arithmetic

Theories of Interval Arithmetic
Mathematical Foundations and Applications

by Hend Dawood

  • Publisher : LAP Lambert Academic Publishing
  • Release : 2011-10-07
  • Pages : 128
  • ISBN : 3846501549
  • Language : En, Es, Fr & De
GET BOOK

Scientists are, all the time, in a struggle with uncertainty which is always a threat to a trustworthy scientific knowledge. A very simple and natural idea, to defeat uncertainty, is that of enclosing uncertain measured values in real closed intervals. On the basis of this idea, interval arithmetic is constructed. The idea of calculating with intervals is not completely new in mathematics: the concept has been known since Archimedes, who used guaranteed lower and upper bounds to compute his constant Pi. Interval arithmetic is now a broad field in which rigorous mathematics is associated with scientific computing. This connection makes it possible to solve uncertainty problems that cannot be efficiently solved by floating-point arithmetic. Today, application areas of interval methods include electrical engineering, control theory, remote sensing, experimental and computational physics, chaotic systems, celestial mechanics, signal processing, computer graphics, robotics, and computer-assisted proofs. The purpose of this book is to be a concise but informative introduction to the theories of interval arithmetic as well as to some of their computational and scientific applications. Editorial Reviews "This new book by Hend Dawood is a fresh introduction to some of the basics of interval computation. It stops short of discussing the more complicated subdivision methods for converging to ranges of values, however it provides a bit of perspective about complex interval arithmetic, constraint intervals, and modal intervals, and it does go into the design of hardware operations for interval arithmetic, which is something still to be done by computer manufacturers." - Ramon E. Moore, (The Founder of Interval Computations) Professor Emeritus of Computer and Information Science, Department of Mathematics, The Ohio State University, Columbus, U.S.A. "A popular math-oriented introduction to interval computations and its applications. This short book contains an explanation of the need for interval computations, a brief history of interval computations, and main interval computation techniques. It also provides an impressive list of main practical applications of interval techniques." - Vladik Kreinovich, (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems) Professor of Computer Science, University of Texas at El Paso, El Paso, Texas, U.S.A. "I am delighted to see one more Egyptian citizen re-entering the field of interval mathematics invented in this very country thousands years ago." - Marek W. Gutowski, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland

Combining Interval, Probabilistic, and Other Types of Uncertainty in Engineering Applications

Combining Interval, Probabilistic, and Other Types of Uncertainty in Engineering Applications
A Book

by Andrew Pownuk,Vladik Kreinovich

  • Publisher : Springer
  • Release : 2018-05-03
  • Pages : 202
  • ISBN : 3319910264
  • Language : En, Es, Fr & De
GET BOOK

How can we solve engineering problems while taking into account data characterized by different types of measurement and estimation uncertainty: interval, probabilistic, fuzzy, etc.? This book provides a theoretical basis for arriving at such solutions, as well as case studies demonstrating how these theoretical ideas can be translated into practical applications in the geosciences, pavement engineering, etc. In all these developments, the authors’ objectives were to provide accurate estimates of the resulting uncertainty; to offer solutions that require reasonably short computation times; to offer content that is accessible for engineers; and to be sufficiently general - so that readers can use the book for many different problems. The authors also describe how to make decisions under different types of uncertainty. The book offers a valuable resource for all practical engineers interested in better ways of gauging uncertainty, for students eager to learn and apply the new techniques, and for researchers interested in processing heterogeneous uncertainty.

Computational Complexity and Feasibility of Data Processing and Interval Computations

Computational Complexity and Feasibility of Data Processing and Interval Computations
A Book

by V. Kreinovich,A.V. Lakeyev,J. Rohn,P.T. Kahl

  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • Pages : 459
  • ISBN : 1475727933
  • Language : En, Es, Fr & De
GET BOOK

Targeted audience • Specialists in numerical computations, especially in numerical optimiza tion, who are interested in designing algorithms with automatie result ver ification, and who would therefore be interested in knowing how general their algorithms caIi in principle be. • Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational com plexity of numerical computations. • Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book .is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing.

New Paradigms in Computational Modeling and Its Applications

New Paradigms in Computational Modeling and Its Applications
A Book

by Snehashish Chakraverty

  • Publisher : Academic Press
  • Release : 2021-01-25
  • Pages : 278
  • ISBN : 0128221682
  • Language : En, Es, Fr & De
GET BOOK

In general, every problem of science and engineering is governed by mathematical models. There is often a need to model, solve and interpret the problems one encounters in the world of practical problems. Models of practical application problems usually need to be handled by efficient computational models. New Paradigms in Computational Modeling and Its Applications deals with recent developments in mathematical methods, including theoretical models as well as applied science and engineering. The book focuses on subjects that can benefit from mathematical methods with concepts of simulation, waves, dynamics, uncertainty, machine intelligence, and applied mathematics. The authors bring together leading-edge research on mathematics combining various fields of science and engineering. This perspective acknowledges the inherent characteristic of current research on mathematics operating in parallel over different subject fields. New Paradigms in Computational Modeling and Its Applications meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of mathematics on the other. As such, the book contains 13 chapters covering various aspects of computational modeling from theoretical to application problems. The first six chapters address various problems of structural and fluid dynamics. The next four chapters include solving problems where the governing parameters are uncertain regarding fuzzy, interval, and affine. The final three chapters will be devoted to the use of machine intelligence in artificial neural networks. Presents a self-contained and up to date review of modelling real life scientific and engineering application problems Introduces new concepts of various computing techniques to handle different engineering and science problems Demonstrates the efficiency and power of the various algorithms and models in a simple and easy to follow style, including numerous examples to illustrate concepts and algorithms

Handbook of Granular Computing

Handbook of Granular Computing
A Book

by Witold Pedrycz,Andrzej Skowron,Vladik Kreinovich

  • Publisher : John Wiley & Sons
  • Release : 2008-07-31
  • Pages : 1148
  • ISBN : 0470724153
  • Language : En, Es, Fr & De
GET BOOK

Although the notion is a relatively recent one, the notions and principles of Granular Computing (GrC) have appeared in a different guise in many related fields including granularity in Artificial Intelligence, interval computing, cluster analysis, quotient space theory and many others. Recent years have witnessed a renewed and expanding interest in the topic as it begins to play a key role in bioinformatics, e-commerce, machine learning, security, data mining and wireless mobile computing when it comes to the issues of effectiveness, robustness and uncertainty. The Handbook of Granular Computing offers a comprehensive reference source for the granular computing community, edited by and with contributions from leading experts in the field. Includes chapters covering the foundations of granular computing, interval analysis and fuzzy set theory; hybrid methods and models of granular computing; and applications and case studies. Divided into 5 sections: Preliminaries, Fundamentals, Methodology and Algorithms, Development of Hybrid Models and Applications and Case Studies. Presents the flow of ideas in a systematic, well-organized manner, starting with the concepts and motivation and proceeding to detailed design that materializes in specific algorithms, applications and case studies. Provides the reader with a self-contained reference that includes all pre-requisite knowledge, augmented with step-by-step explanations of more advanced concepts. The Handbook of Granular Computing represents a significant and valuable contribution to the literature and will appeal to a broad audience including researchers, students and practitioners in the fields of Computational Intelligence, pattern recognition, fuzzy sets and neural networks, system modelling, operations research and bioinformatics.

MATLAB Numerical Methods with Chemical Engineering Applications

MATLAB Numerical Methods with Chemical Engineering Applications
A Book

by Kamal Al-Malah

  • Publisher : McGraw Hill Professional
  • Release : 2013-07-31
  • Pages : 384
  • ISBN : 0071831290
  • Language : En, Es, Fr & De
GET BOOK

A practical, professional guide to MATLAB computational techniques and engineering applications MATLAB Numerical Methods with Chemical Engineering Applications shows you, step by step, how to use MATLAB® to model and simulate physical problems in the chemical engineering realm. Written for MATLAB 7.11, this hands-on resource contains concise explanations of essential MATLAB commands, as well as easy-to-follow instructions for using the programming features, graphical capabilities, and desktop interface. Every step needed toward the final solution is algorithmically explained via snapshots of the MATLAB platform in parallel with the text. End-of-chapter problems help you practice what you've learned. Master this powerful computational tool using this detailed, self-teaching guide. COVERAGE INCLUDES: MATLAB basics Matrices MATLAB scripting language: M-file Image and image analysis Curve-fitting Numerical integration Solving differential equations A system of algebraic equations Statistics Chemical engineering applications MATLAB Graphical User Interface Design Environment (GUIDE)

The Finite Element Method

The Finite Element Method
Its Fundamentals and Applications in Engineering

by Zhangxin Chen

  • Publisher : World Scientific Publishing Company
  • Release : 2011-10-06
  • Pages : 348
  • ISBN : 9813100656
  • Language : En, Es, Fr & De
GET BOOK

This Finite Element Method offers a fundamental and practical introduction to the finite element method, its variants, and their applications in engineering. Every concept is introduced in the simplest possible setting, while maintaining a level of treatment that is as rigorous as possible without being unnecessarily abstract. Various finite elements in one, two, and three space dimensions are introduced, and their applications to elliptic, parabolic, hyperbolic, and nonlinear equations and to solid mechanics, fluid mechanics, and porous media flow problems are addressed. The variants include the control volume, multipoint flux approximation, nonconforming, mixed, discontinuous, characteristic, adaptive, and multiscale finite element methods. Illustrative computer programs in Fortran and C++ are described. An extensive set of exercises are provided in each chapter. This book serves as a text a for one-semester course for upper-level undergraduates and beginning graduate students and as a professional reference for engineers, mathematicians, and scientists.

Computational Intelligence in Information Assurance and Security

Computational Intelligence in Information Assurance and Security
A Book

by Ajith Abraham

  • Publisher : Springer Science & Business Media
  • Release : 2007-05-02
  • Pages : 255
  • ISBN : 3540710779
  • Language : En, Es, Fr & De
GET BOOK

This volume provides the academic and industrial community with a medium for presenting original research and applications related to information assurance and security using computational intelligence techniques. It details current research on information assurance and security regarding both the theoretical and methodological aspects, as well as various applications in solving real world problems using computational intelligence.

Interval Finite Element Method with MATLAB

Interval Finite Element Method with MATLAB
A Book

by Sukanta Nayak,Snehashish Chakraverty

  • Publisher : Academic Press
  • Release : 2018-02-05
  • Pages : 168
  • ISBN : 0128129743
  • Language : En, Es, Fr & De
GET BOOK

Interval Finite Element Method with MATLAB provides a thorough introduction to an effective way of investigating problems involving uncertainty using computational modeling. The well-known and versatile Finite Element Method (FEM) is combined with the concept of interval uncertainties to develop the Interval Finite Element Method (IFEM). An interval or stochastic environment in parameters and variables is used in place of crisp ones to make the governing equations interval, thereby allowing modeling of the problem. The concept of interval uncertainties is systematically explained. Several examples are explored with IFEM using MATLAB on topics like spring mass, bar, truss and frame. Provides a systematic approach to understanding the interval uncertainties caused by vague or imprecise data Describes the interval finite element method in detail Gives step-by-step instructions for how to use MATLAB code for IFEM Provides a range of examples of IFEM in use, with accompanying MATLAB codes

Soft Computing Approach for Mathematical Modeling of Engineering Problems

Soft Computing Approach for Mathematical Modeling of Engineering Problems
A Book

by Ali Ahmadian,Soheil Salahshour

  • Publisher : CRC Press
  • Release : 2021-09-03
  • Pages : 222
  • ISBN : 1000432467
  • Language : En, Es, Fr & De
GET BOOK

This book describes different mathematical modeling and soft computing techniques used to solve practical engineering problems. It gives an overview of the current state of soft computing techniques and describes the advantages and disadvantages of soft computing compared to traditional hard computing techniques. Through examples and case studies the editors demonstrate and describe how problems with inherent uncertainty can be addressed and eventually solved through the aid of numerical models and methods. The chapters address several applications and examples in bioengineering science, drug delivery, solving inventory issues, Industry 4.0, augmented reality and weather forecasting. Other examples include solving fuzzy-shortest-path problems by introducing a new distance and ranking functions. Because, in practice, problems arise with uncertain data and most of them cannot be solved exactly and easily, the main objective is to develop models that deliver solutions with the aid of numerical methods. This is the reason behind investigating soft numerical computing in dynamic systems. Having this in mind, the authors and editors have considered error of approximation and have discussed several common types of errors and their propagations. Moreover, they have explained the numerical methods, along with convergence and consistence properties and characteristics, as the main objectives behind this book involve considering, discussing and proving related theorems within the setting of soft computing. This book examines dynamic models, and how time is fundamental to the structure of the model and data as well as the understanding of how a process unfolds • Discusses mathematical modeling with soft computing and the implementations of uncertain mathematical models • Examines how uncertain dynamic systems models include uncertain state, uncertain state space and uncertain state’s transition functions • Assists readers to become familiar with many soft numerical methods to simulate the solution function’s behavior This book is intended for system specialists who are interested in dynamic systems that operate at different time scales. The book can be used by engineering students, researchers and professionals in control and finite element fields as well as all engineering, applied mathematics, economics and computer science interested in dynamic and uncertain systems. Ali Ahmadian is a Senior Lecturer at the Institute of IR 4.0, The National University of Malaysia. Soheil Salahshour is an associate professor at Bahcesehir University.

Computational Intelligence in Emerging Technologies for Engineering Applications

Computational Intelligence in Emerging Technologies for Engineering Applications
A Book

by Orestes Llanes Santiago,Carlos Cruz Corona,Antônio José Silva Neto,José Luis Verdegay

  • Publisher : Springer Nature
  • Release : 2020-02-14
  • Pages : 291
  • ISBN : 3030344096
  • Language : En, Es, Fr & De
GET BOOK

This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.

Multiphysics Modeling: Numerical Methods and Engineering Applications

Multiphysics Modeling: Numerical Methods and Engineering Applications
Tsinghua University Press Computational Mechanics Series

by Qun Zhang,Song Cen

  • Publisher : Elsevier
  • Release : 2015-12-15
  • Pages : 440
  • ISBN : 0124077374
  • Language : En, Es, Fr & De
GET BOOK

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume Provides a go-to resource for coupling and multiphysics problems Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering

Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications

Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications
A Book

by Arun Kumar Sangaiah,Zhiyong Zhang,Michael Sheng

  • Publisher : Academic Press
  • Release : 2018-08-21
  • Pages : 362
  • ISBN : 0128133279
  • Language : En, Es, Fr & De
GET BOOK

Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications covers timely topics, including the neural network (NN), particle swarm optimization (PSO), evolutionary algorithm (GA), fuzzy sets (FS) and rough sets (RS), etc. Furthermore, the book highlights recent research on representative techniques to elaborate how a data-centric system formed a powerful platform for the processing of cloud hosted multimedia big data and how it could be analyzed, processed and characterized by CI. The book also provides a view on how techniques in CI can offer solutions in modeling, relationship pattern recognition, clustering and other problems in bioengineering. It is written for domain experts and developers who want to understand and explore the application of computational intelligence aspects (opportunities and challenges) for design and development of a data-centric system in the context of multimedia cloud, big data era and its related applications, such as smarter healthcare, homeland security, traffic control trading analysis and telecom, etc. Researchers and PhD students exploring the significance of data centric systems in the next paradigm of computing will find this book extremely useful. Presents a brief overview of computational intelligence paradigms and its significant role in application domains Illustrates the state-of-the-art and recent developments in the new theories and applications of CI approaches Familiarizes the reader with computational intelligence concepts and technologies that are successfully used in the implementation of cloud-centric multimedia services in massive data processing Provides new advances in the fields of CI for bio-engineering application