Download Computational Nuclear Engineering and Radiological Science Using Python Ebook PDF

Computational Nuclear Engineering and Radiological Science Using Python

Computational Nuclear Engineering and Radiological Science Using Python
A Book

by Ryan McClarren

  • Publisher : Academic Press
  • Release : 2017-10-27
  • Pages : 460
  • ISBN : 0128123710
  • Language : En, Es, Fr & De
GET BOOK

Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especially unique in the market with its implementation of Python into nuclear engineering methods, seeking to do so by first teaching the basics of Python, then going through different techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to nuclear engineering. Along with examples of code and end-of-chapter problems, the book is an asset to novice programmers in nuclear engineering and radiological sciences, teaching them how to analyze complex systems using modern computational techniques. For decades, the paradigm in engineering education, in particular, nuclear engineering, has been to teach Fortran along with numerical methods for solving engineering problems. This has been slowly changing as new codes have been written utilizing modern languages, such as Python, thus resulting in a greater need for the development of more modern computational skills and techniques in nuclear engineering. Offers numerical methods as a tool to solve specific problems in nuclear engineering Provides examples on how to simulate different problems and produce graphs using Python Supplies accompanying codes and data on a companion website, along with solutions to end-of-chapter problems

Uncertainty Quantification and Predictive Computational Science

Uncertainty Quantification and Predictive Computational Science
A Foundation for Physical Scientists and Engineers

by Ryan G. McClarren

  • Publisher : Springer
  • Release : 2018-11-23
  • Pages : 345
  • ISBN : 3319995251
  • Language : En, Es, Fr & De
GET BOOK

This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

Machine Learning for Engineers

Machine Learning for Engineers
Using data to solve problems for physical systems

by Ryan G. McClarren

  • Publisher : Springer
  • Release : 2021-09-22
  • Pages : 247
  • ISBN : 9783030703875
  • Language : En, Es, Fr & De
GET BOOK

All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.

Government Reports Announcements & Index

Government Reports Announcements & Index
A Book

by Anonim

  • Publisher : Unknown Publisher
  • Release : 1996
  • Pages : 129
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK