Download Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites Ebook PDF

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites
A Book

by Wim Van Paepegem

  • Publisher : Woodhead Publishing
  • Release : 2020-11-25
  • Pages : 764
  • ISBN : 0128189851
  • Language : En, Es, Fr & De
GET BOOK

Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:

Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites

Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites
From Nanoscale to Continuum Simulations

by Sumit Sharma

  • Publisher : John Wiley & Sons
  • Release : 2021-03-09
  • Pages : 320
  • ISBN : 1119653649
  • Language : En, Es, Fr & De
GET BOOK

Learn to model your own problems for predicting the properties of polymer-based composites Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites: Nanoscale to Continuum Simulations provides readers with a thorough and up-to-date overview of nano, micro, and continuum approaches for the multiscale modeling of polymer-based composites. Covering nanocomposite development, theoretical models, and common simulation methods, the text includes a variety of case studies and scripting tutorials that enable readers to apply and further develop the supplied simulations. The book describes the foundations of molecular dynamics and continuum mechanics methods, guides readers through the basic steps required for multiscale modeling of any material, and correlates the results between the experimental and theoretical work performed. Focused primarily on nanocomposites, the methods covered in the book are applicable to various other materials such as carbon nanotubes, polymers, metals, and ceramics. Throughout the book, readers are introduced to key topics of relevance to nanocomposite materials and structures—supported by journal articles that discuss recent developments in modeling techniques and in the prediction of mechanical and thermal properties. This timely, highly practical resource: Explains the molecular dynamics (MD) simulation procedure for nanofiber and nanoparticle reinforced polymer composites Compares results of experimental and theoretical results from mechanical models at different length scales Covers different types of fibers and matrix materials that constitute composite materials, including glass, boron, carbon, and Kevlar Reviews models that predict the stiffness of short-fiber composites, including the self-consistent model for finite-length fibers, bounding models, and the Halpin-Tsai equation Describes various molecular modeling methods such as Monte Carlo, Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann methods Highlights the potential of nanocomposites for defense and space applications Perfect for materials scientists, materials engineers, polymer scientists, and mechanical engineers, Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites is also a must-have reference for computer simulation scientists seeking to improve their understanding of reinforced polymer nanocomposites.

Advanced fibre-reinforced polymer (FRP) composites for structural applications

Advanced fibre-reinforced polymer (FRP) composites for structural applications
11. Understanding and predicting stiffness in advanced fibre-reinforced polymer (FRP) composites for structural applications

by R.M. Guedes,J. Xavier

  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-09-30
  • Pages : 928
  • ISBN : 0128088419
  • Language : En, Es, Fr & De
GET BOOK

This chapter describes the elastic qualities of advanced fibre-reinforced composites, in terms of characterization, measurement and prediction from the basic constituents, i.e. the fibre and matrix. The elastic analysis comprises applying micromechanics approaches to predict the lamina elastic properties from the basic constituents, and using classical lamination theory to predict the elastic properties of composite materials composed of several laminae stacked at different orientations. Examples are given to illustrate the theoretical analysis and give a full apprehension of its prediction capability. The last section provides an overview on identification methods for elastic proprieties based on full-field measurements. It is shown that these methodologies are very convenient for elastic characterization of anisotropic and heterogeneous materials.

Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites

Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites
From Nanoscale to Continuum Simulations

by Sumit Sharma

  • Publisher : John Wiley & Sons
  • Release : 2021-02-22
  • Pages : 320
  • ISBN : 1119653630
  • Language : En, Es, Fr & De
GET BOOK

Learn to model your own problems for predicting the properties of polymer-based composites Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites: Nanoscale to Continuum Simulations provides readers with a thorough and up-to-date overview of nano, micro, and continuum approaches for the multiscale modeling of polymer-based composites. Covering nanocomposite development, theoretical models, and common simulation methods, the text includes a variety of case studies and scripting tutorials that enable readers to apply and further develop the supplied simulations. The book describes the foundations of molecular dynamics and continuum mechanics methods, guides readers through the basic steps required for multiscale modeling of any material, and correlates the results between the experimental and theoretical work performed. Focused primarily on nanocomposites, the methods covered in the book are applicable to various other materials such as carbon nanotubes, polymers, metals, and ceramics. Throughout the book, readers are introduced to key topics of relevance to nanocomposite materials and structures—supported by journal articles that discuss recent developments in modeling techniques and in the prediction of mechanical and thermal properties. This timely, highly practical resource: Explains the molecular dynamics (MD) simulation procedure for nanofiber and nanoparticle reinforced polymer composites Compares results of experimental and theoretical results from mechanical models at different length scales Covers different types of fibers and matrix materials that constitute composite materials, including glass, boron, carbon, and Kevlar Reviews models that predict the stiffness of short-fiber composites, including the self-consistent model for finite-length fibers, bounding models, and the Halpin-Tsai equation Describes various molecular modeling methods such as Monte Carlo, Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann methods Highlights the potential of nanocomposites for defense and space applications Perfect for materials scientists, materials engineers, polymer scientists, and mechanical engineers, Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites is also a must-have reference for computer simulation scientists seeking to improve their understanding of reinforced polymer nanocomposites.

Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems

Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems
A Book

by Gregory M. Odegard

  • Publisher : Unknown Publisher
  • Release : 2001
  • Pages : 12
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

In this study, a technique has been proposed for developing constitive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method.

Advanced Methods of Continuum Mechanics for Materials and Structures

Advanced Methods of Continuum Mechanics for Materials and Structures
A Book

by Konstantin Naumenko,Marcus Aßmus

  • Publisher : Springer
  • Release : 2016-05-12
  • Pages : 558
  • ISBN : 9811009597
  • Language : En, Es, Fr & De
GET BOOK

This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

Continuum Mechanics - Volume II

Continuum Mechanics - Volume II

by José Merodio,Giuseppe Saccomandi

  • Publisher : EOLSS Publications
  • Release : 2011-11-30
  • Pages : 446
  • ISBN : 1848263732
  • Language : En, Es, Fr & De
GET BOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.

Failure Criteria in Fibre Reinforced Polymer Composites

Failure Criteria in Fibre Reinforced Polymer Composites
The World-Wide Failure Exercise

by M. Hinton,P D Soden,A. S. Kaddour

  • Publisher : Elsevier
  • Release : 2004-09-14
  • Pages : 1268
  • ISBN : 9780080444758
  • Language : En, Es, Fr & De
GET BOOK

Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design. All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge. Brings together 19 failure theories, with many application examples. Compares the leading failure theories with one another and with experimental data Failure to apply these theories could result in potentially unsafe designs or over design.

Size-Dependent Continuum Mechanics Approaches

Size-Dependent Continuum Mechanics Approaches
Theory and Applications

by Esmaeal Ghavanloo

  • Publisher : Springer Nature
  • Release : 2021
  • Pages : 329
  • ISBN : 3030630501
  • Language : En, Es, Fr & De
GET BOOK

Computational Fluid and Solid Mechanics 2003

Computational Fluid and Solid Mechanics 2003
A Book

by K.J Bathe

  • Publisher : Elsevier
  • Release : 2003-06-02
  • Pages : 2524
  • ISBN : 9780080529479
  • Language : En, Es, Fr & De
GET BOOK

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics. Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design. The eight tasks are: The automatic solution of mathematical models Effective numerical schemes for fluid flows The development of an effective mesh-free numerical solution method The development of numerical procedures for multiphysics problems The development of numerical procedures for multiscale problems The modelling of uncertainties The analysis of complete life cycles of systems Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features Bridges the gap between academic researchers and practitioners in industry Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis

Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano

Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano
Application to biology, physics, material science, mechanics, structural and processing engineering

by G.C. Sih

  • Publisher : Springer Science & Business Media
  • Release : 2007-11-29
  • Pages : 460
  • ISBN : 9781402050626
  • Language : En, Es, Fr & De
GET BOOK

For the first time, a book is being edited to address how results from one scale can be shifted or related to another scale, say from macro to micro or vice versa. The new approach retains the use of the equilibrium mechanics within a scale level such that cross scale results can be connected by scale invariant criteria. Engineers in different disciplines should be able to understand and use the results.

On the anisotropic plastic behaviour of short fibre reinforced thermoplastics and its description by phenomenological material modelling

On the anisotropic plastic behaviour of short fibre reinforced thermoplastics and its description by phenomenological material modelling
A Book

by Felix Dillenberger

  • Publisher : Springer Nature
  • Release : 2019-10-21
  • Pages : 227
  • ISBN : 3658281995
  • Language : En, Es, Fr & De
GET BOOK

A requirement for the safe design of thermoplastic parts is the ability to precisely predict mechanical behaviour by finite element simulations. Typical examples include the engineering of relevant components in automotive applications. For this purpose adequate material models are essential. In this context, the present work introduces a material modelling approach for short fibre reinforced thermoplastics (SFRTPs). SFRTP parts are processed cost-effectively by injection moulding and show a varying degree of anisotropy due to the locally inhomogeneous fibre distributions that arise during the moulding process. The presented material model considers linear-elastic behaviour and non-linear orthotropic stress-state dependent viscoplastic deformation for arbitrary fibre distributions. The constitutive equations are verified with the experiments of a PPGF30 material regarding different stress-states and orientations.

Problems in Applied, Industrial and Engineering Mathematics

Problems in Applied, Industrial and Engineering Mathematics
A Book

by H.K. Kuiken,S.W. Rienstra

  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • Pages : 265
  • ISBN : 940112440X
  • Language : En, Es, Fr & De
GET BOOK

This book contains contributions by sixteen editors of a single journal specialised in real-world applications of mathematics, particularly in engineering. These papers serve to indicate that applying mathematics can be a very exciting and intellectually rewarding activity. Among the applied fields we note Thermal and Marangoni convection. High-pressure gas-discharge lamps, Potential flow in a channel, Thin airfoil problems, Cooling of a fibre, Moving-contact-line problems, Spot disturbance in boundary layers, Fibre-reinforced composites, Numerics of nonuniform grids, Stewartson layers on a rotating disk, Causality and the radiation condition, Nonlinear elastic membranes, Acoustics in bubbly liquids, Oscillation of a floating body in a viscous fluid, Electromagnetics of superconducting composites. Applied mathematicians, theoretical physicists and engineers will find a lot in this book that will be of interest to them.

Continuum Mechanics

Continuum Mechanics
Progress in Fundamentals and Engineering Applications

by Yong Gan

  • Publisher : BoD – Books on Demand
  • Release : 2012-03-28
  • Pages : 168
  • ISBN : 9535104470
  • Language : En, Es, Fr & De
GET BOOK

Continuum Mechanics is the foundation for Applied Mechanics. There are numerous books on Continuum Mechanics with the main focus on the macroscale mechanical behavior of materials. Unlike classical Continuum Mechanics books, this book summarizes the advances of Continuum Mechanics in several defined areas. Emphasis is placed on the application aspect. The applications described in the book cover energy materials and systems (fuel cell materials and electrodes), materials removal, and mechanical response/deformation of structural components including plates, pipelines etc. Researchers from different fields should be benefited from reading the mechanics approached to real engineering problems.

Fundamentals of Fibre Reinforced Composite Materials

Fundamentals of Fibre Reinforced Composite Materials
A Book

by A.R. Bunsell,S. Joannès,A. Thionnet

  • Publisher : CRC Press
  • Release : 2021-03-23
  • Pages : 376
  • ISBN : 0429680937
  • Language : En, Es, Fr & De
GET BOOK

Fibre reinforced composite materials are showing sustained growth in an ever widening range of applications from food trays to spacecraft as well as contributing to resolving environmental problems, including enabling the forthcoming hydrogen economy to be realised. This second edition of Fundamentals of Fibre Reinforced Composite Materials has been fully updated throughout, providing an authoritative and modern introduction to the topic with a brief history of composite development, a review of composite applications, manufacture and markets, types of fibres and matrices used, and their properties with a detailed introduction into the computer simulation of composite behaviour. With extensive sets of sample problems accompanying each chapter, this book is ideally suited to undergraduate and graduate students of materials science, structural, mechanical, and aeronautical engineering, polymer science, metallurgy, and other courses. It will also be of use as a reference to researchers and engineers working with composite materials and material scientists in general. Features: Presents thorough discussions on composite history, composite applications and markets, types of fibres and resins used, and their respective properties Relates mathematical concepts to the structure of the material under discussion leading to the quantitative evaluation of safety factors Provides numerous sets of sample problems in each chapter

Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures

Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures
A Book

by J. Hult,F.G. Rammerstorfer

  • Publisher : Springer
  • Release : 2014-05-04
  • Pages : 314
  • ISBN : 3709127025
  • Language : En, Es, Fr & De
GET BOOK

The book aims at giving an overview of current methods in engineering mechanics of FRP components and structures as well as hybrid components and structures. Main emphasis is on basic micro and macro mechanics of laminates. Long as well as short fibre composites are studied, and criteria for different kinds of rupture are treated. Micromechanical considerations for material characterization and mechanisms of static ductile and brittle rupture are studied, as well as FRP structures under thermal and dynamic loading programs. Optimum design and manufacture situations are described as well. The book makes designers familiar with the opportunities and limitations of modern high quality fibre composites. Practical engineering applications of the described analytical and numerical methods are also presented.

IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics

IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics
Proceedings of the IUTAM-ISIMM Symposium held in Nottingham, U.K., 30 August – 3 September 1994

by David Parker,Arthur H. England

  • Publisher : Springer Science & Business Media
  • Release : 1995-08-31
  • Pages : 520
  • ISBN : 9780792335948
  • Language : En, Es, Fr & De
GET BOOK

Proceedings of the IUTAM-ISIMM Symposium, held in Nottingham, U.K., 30 August--3 September 1994

Advances in Continuum Mechanics

Advances in Continuum Mechanics
39 Papers from International Experts Dedicated to Horst Lippmann

by Otto Brüller,Volker Mannl,Jerzy Najar

  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • Pages : 499
  • ISBN : 3642488900
  • Language : En, Es, Fr & De
GET BOOK

Recognized authors contributed to this collection of original papers from all fields of research in continuum mechanics. Special emphasis is given to time dependent and independent permanent deformations, damage and fracture. Part of the contributions is dedicated to current efforts in describing material behavior with regard to, e.g., anisotropy, thermal effects, softening, ductile and brittle fracture, porosity and granular structure. Another part deals with numerical aspects arising from the implementation of material laws in the calculations of forming processes, soil mechanics and structural mechanics. Applications of theory and numerical methods belong to the following areas: Comparison with experimental results from material testing, metal forming under thermal and dynamic conditions, failure by damage, fracture and localized deformation modes. The variety of treated topics provides a survery of the actual research in these fields; therefore, the book is addressed to those interested in special problems of continuum mechanics as well as to those interested in a general knowledge.

Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials
9. Micromechanical modelling of wind turbine blade materials

by L. MISHNAEVSKY

  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-10-31
  • Pages : 464
  • ISBN : 0128089202
  • Language : En, Es, Fr & De
GET BOOK

An overview of the micromechanics of materials methods and approaches that can be used for the modelling of wind turbine blade composites is given in this chapter. Using the various modelling methods reviewed here, the strength, stiffness and lifetime of composite materials can be predicted and the suitability of different groups of materials for applications in wind turbine blades can be analysed. The effects of interface and matrix properties, fibre clustering and nanoreinforcement on the strength and lifetime of composites are studied in a number of simulations, and some examples of the analysis of microstructural effects on the strength and fatigue life of composites are provided.

Self-Healing Polymer-Based Systems

Self-Healing Polymer-Based Systems
A Book

by Sabu Thomas,Anu Surendran

  • Publisher : Elsevier
  • Release : 2020-07-11
  • Pages : 544
  • ISBN : 0128184515
  • Language : En, Es, Fr & De
GET BOOK

Self-Healing Polymer-Based Systems presents all aspects of self-healing polymeric materials, offering detailed information on fundamentals, preparation methods, technology, and applications, and drawing on the latest state-of-the-art research. The book begins by introducing self-healing polymeric systems, with a thorough explanation of underlying concepts, challenges, mechanisms, kinetic and thermodynamics, and types of chemistry involved. The second part of the book studies the main categories of self-healing polymeric material, examining elastomer-based, thermoplastic-based, and thermoset-based materials in turn. This is followed by a series of chapters that examine the very latest advances, including nanoparticles, coatings, shape memory, self-healing biomaterials, ionomers, supramolecular polymers, photoinduced and thermally induced self-healing, healing efficiency, life cycle analysis, and characterization. Finally, novel applications are presented and explained. This book serves as an essential resource for academic researchers, scientists, and graduate students in the areas of polymer properties, self-healing materials, polymer science, polymer chemistry, and materials science. In industry, this book contains highly valuable information for R&D professionals, designers, and engineers, who are looking to incorporate self-healing properties in their materials, products, or components. Provides comprehensive coverage of self-healing polymeric materials, covering principles, techniques, and applications Includes the very latest developments in the field, such as the role of nanofillers in healing, life cycle analysis of materials, and shape memory assisted healing Enables the reader to unlock the potential of self-healing polymeric materials for a range of advanced applications