# Download Fractional Order Systems Ebook PDF

**Fractional Order Systems**

Modeling and Control Applications

#### by **Riccardo Caponetto**

- Publisher : World Scientific
- Release : 2010
- Pages : 200
- ISBN : 9814304204
- Language : En, Es, Fr & De

This book aims to propose implementations and applications of Fractional Order Systems (FOS). It is well known that FOS can be applied in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductive chapters on FOS are included, on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material may have applications in robotics, aerospace and biomedicine.

**Fractional Order Systems**

A Book

#### by **Ivo Petráš**

- Publisher : MDPI
- Release : 2019-10-29
- Pages : 114
- ISBN : 3039216082
- Language : En, Es, Fr & De

This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems. This Special Issue explores applications of such systems to control, synchronization, and various mathematical models, as for instance, MRI, long memory process, diffusion.

**Fractional Order Systems**

Optimization, Control, Circuit Realizations and Applications

#### by **Ahmad Taher Azar,Ahmed G. Radwan,Sundarapandian Vaidyanathan**

- Publisher : Academic Press
- Release : 2018-08-16
- Pages : 741
- ISBN : 0128163089
- Language : En, Es, Fr & De

Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems based on the new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many of the applications in the book

**Fractional-Order Control Systems**

Fundamentals and Numerical Implementations

#### by **Dingyü Xue**

- Publisher : Walter de Gruyter GmbH & Co KG
- Release : 2017-07-10
- Pages : 388
- ISBN : 3110497190
- Language : En, Es, Fr & De

This book explains the essentials of fractional calculus and demonstrates its application in control system modeling, analysis and design. It presents original research to find high-precision solutions to fractional-order differentiations and differential equations. Numerical algorithms and their implementations are proposed to analyze multivariable fractional-order control systems. Through high-quality MATLAB programs, it provides engineers and applied mathematicians with theoretical and numerical tools to design control systems. Contents Introduction to fractional calculus and fractional-order control Mathematical prerequisites Definitions and computation algorithms of fractional-order derivatives and Integrals Solutions of linear fractional-order differential equations Approximation of fractional-order operators Modelling and analysis of multivariable fractional-order transfer function Matrices State space modelling and analysis of linear fractional-order Systems Numerical solutions of nonlinear fractional-order differential Equations Design of fractional-order PID controllers Frequency domain controller design for multivariable fractional-order Systems Inverse Laplace transforms involving fractional and irrational Operations FOTF Toolbox functions and models Benchmark problems for the assessment of fractional-order differential equation algorithms

**Fractional-Order Nonlinear Systems**

Modeling, Analysis and Simulation

#### by **Ivo Petráš**

- Publisher : Springer Science & Business Media
- Release : 2011-05-30
- Pages : 218
- ISBN : 3642181015
- Language : En, Es, Fr & De

"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.

**Fractional-order Systems and Controls**

Fundamentals and Applications

#### by **Concepción A. Monje,YangQuan Chen,Blas M. Vinagre,Dingyu Xue,Vicente Feliu-Batlle**

- Publisher : Springer Science & Business Media
- Release : 2010-09-28
- Pages : 415
- ISBN : 9781849963350
- Language : En, Es, Fr & De

Fractional-order Systems and Controls details the use of fractional calculus in the description and modeling of systems, and in a range of control design and practical applications. It is largely self-contained, covering the fundamentals of fractional calculus together with some analytical and numerical techniques and providing MATLAB® codes for the simulation of fractional-order control (FOC) systems. Many different FOC schemes are presented for control and dynamic systems problems. Practical material relating to a wide variety of applications is also provided. All the control schemes and applications are presented in the monograph with either system simulation results or real experimental results, or both. Fractional-order Systems and Controls provides readers with a basic understanding of FOC concepts and methods, so they can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques.

**Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach**

A Book

#### by **Bijnan Bandyopadhyay,Shyam Kamal**

- Publisher : Springer
- Release : 2014-07-22
- Pages : 200
- ISBN : 3319086219
- Language : En, Es, Fr & De

In the last two decades fractional differential equations have been used more frequently in physics, signal processing, fluid mechanics, viscoelasticity, mathematical biology, electro chemistry and many others. It opens a new and more realistic way to capture memory dependent phenomena and irregularities inside the systems by using more sophisticated mathematical analysis. This monograph is based on the authors’ work on stabilization and control design for continuous and discrete fractional order systems. The initial two chapters and some parts of the third chapter are written in tutorial fashion, presenting all the basic concepts of fractional order system and a brief overview of sliding mode control of fractional order systems. The other parts contain deal with robust finite time stability of fractional order systems, integral sliding mode control of fractional order systems, co-operative control of multi-agent systems modeled as fractional differential equation, robust stabilization of discrete fractional order systems, high performance control using soft variable structure control and contraction analysis by integer and fractional order infinitesimal variations.

**Mathematical Techniques of Fractional Order Systems**

A Book

#### by **Ahmad Taher Azar,Ahmed G. Radwan,Sundarapandian Vaidyanathan**

- Publisher : Elsevier
- Release : 2018-06-11
- Pages : 700
- ISBN : 012813593X
- Language : En, Es, Fr & De

Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems. Discusses multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes circuits and systems based on new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many applications in the book

**Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems**

A Book

#### by **Boulkroune, Abdesselem,Ladaci, Samir**

- Publisher : IGI Global
- Release : 2018-05-11
- Pages : 539
- ISBN : 152255419X
- Language : En, Es, Fr & De

In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.

**Fractional Order Signal Processing**

Introductory Concepts and Applications

#### by **Saptarshi Das,Indranil Pan**

- Publisher : Springer Science & Business Media
- Release : 2011-09-15
- Pages : 101
- ISBN : 9783642231179
- Language : En, Es, Fr & De

The book tries to briefly introduce the diverse literatures in the field of fractional order signal processing which is becoming an emerging topic among an interdisciplinary community of researchers. This book is aimed at postgraduate and beginning level research scholars who would like to work in the field of Fractional Order Signal processing (FOSP). The readers should have preliminary knowledge about basic signal processing techniques. Prerequisite knowledge of fractional calculus is not essential and is exposited at relevant places in connection to the appropriate signal processing topics. Basic signal processing techniques like filtering, estimation, system identification, etc. in the light of fractional order calculus are presented along with relevant application areas. The readers can easily extend these concepts to varied disciplines like image or speech processing, pattern recognition, time series forecasting, financial data analysis and modeling, traffic modeling in communication channels, optics, biomedical signal processing, electrochemical applications and many more. Adequate references are provided in each category so that the researchers can delve deeper into each area and broaden their horizon of understanding. Available MATLAB tools to simulate FOSP theories are also introduced so that the readers can apply the theoretical concepts right-away and gain practical insight in the specific domain.

**Intelligent Fractional Order Systems and Control**

An Introduction

#### by **Indranil Pan,Saptarshi Das**

- Publisher : Springer
- Release : 2012-08-23
- Pages : 298
- ISBN : 3642315496
- Language : En, Es, Fr & De

Fractional order calculus is finding increasing interest in the control system community. Hardware realizations of fractional order controllers have sparked off a renewed zeal into the investigations of control system design in the light of fractional calculus. As such many notions of integer order LTI systems are being modified and extended to incorporate these new concepts. Computational Intelligence (CI) techniques have been applied to engineering problems to find solutions to many hitherto intractable conundrums and is a useful tool for dealing with problems of higher computational complexity. This book borders on the interface between CI techniques and fractional calculus, and looks at ways in which fractional order control systems may be designed or enhanced using CI based paradigms. To the best of the author’s knowledge this is the first book of its kind exclusively dedicated to the application of computational intelligence techniques in fractional order systems and control. The book tries to assimilate various existing concepts in this nascent field of fractional order intelligent control and is aimed at researchers and post graduate students working in this field.

**Fractional-order Modeling and Control of Dynamic Systems**

A Book

#### by **Aleksei Tepljakov**

- Publisher : Springer
- Release : 2017-02-08
- Pages : 173
- ISBN : 3319529501
- Language : En, Es, Fr & De

This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.

**Fractional-order Systems and PID Controllers**

Using Scilab and Curve Fitting Based Approximation Techniques

#### by **Kishore Bingi,Rosdiazli Ibrahim,Mohd Noh Karsiti,Sabo Miya Hassan,Vivekananda Rajah Harindran**

- Publisher : Springer Nature
- Release : 2019-10-31
- Pages : 256
- ISBN : 3030339343
- Language : En, Es, Fr & De

This book presents a detailed study on fractional-order, set-point, weighted PID control strategies and the development of curve-fitting-based approximation techniques for fractional-order parameters. Furthermore, in all the cases, it includes the Scilab-based commands and functions for easy implementation and better understanding, and to appeal to a wide range of readers working with the software. The presented Scilab-based toolbox is the first toolbox for fractional-order systems developed in open-source software. The toolboxes allow time and frequency domains as well as stability analysis of the fractional-order systems and controllers. The book also provides real-time examples of the control of process plants using the developed fractional-order based PID control strategies and the approximation techniques. The book is of interest to readers in the areas of fractional-order controllers, approximation techniques, process modeling, control, and optimization, both in industry and academia. In industry, the book is particularly valuable in the areas of research and development (R&D) as well as areas where PID controllers suffice – and it should be noted that around 80% of low-level controllers in industry are PID based. The book is also useful where conventional PIDs are constrained, such as in industries where long-term delay and non-linearity are present. Here it can be used for the design of controllers for real-time processes. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.

**Intelligent Fractional Order Systems and Control**

An Introduction

#### by **Indranil Pan,Saptarshi Das**

- Publisher : Springer
- Release : 2012-08-23
- Pages : 298
- ISBN : 3642315496
- Language : En, Es, Fr & De

Fractional order calculus is finding increasing interest in the control system community. Hardware realizations of fractional order controllers have sparked off a renewed zeal into the investigations of control system design in the light of fractional calculus. As such many notions of integer order LTI systems are being modified and extended to incorporate these new concepts. Computational Intelligence (CI) techniques have been applied to engineering problems to find solutions to many hitherto intractable conundrums and is a useful tool for dealing with problems of higher computational complexity. This book borders on the interface between CI techniques and fractional calculus, and looks at ways in which fractional order control systems may be designed or enhanced using CI based paradigms. To the best of the author’s knowledge this is the first book of its kind exclusively dedicated to the application of computational intelligence techniques in fractional order systems and control. The book tries to assimilate various existing concepts in this nascent field of fractional order intelligent control and is aimed at researchers and post graduate students working in this field.

**Analysis, Modeling and Stability of Fractional Order Differential Systems 1**

The Infinite State Approach

#### by **Jean-Claude Trigeassou,Nezha Maamri**

- Publisher : John Wiley & Sons
- Release : 2019-08-06
- Pages : 316
- ISBN : 111964884X
- Language : En, Es, Fr & De

This book introduces an original fractional calculus methodology (‘the infinite state approach’) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation.

**Advances in Synchronization of Coupled Fractional Order Systems**

Fundamentals and Methods

#### by **Rafael Martínez-Guerra,Claudia Alejandra Pérez-Pinacho**

- Publisher : Springer
- Release : 2018-07-23
- Pages : 185
- ISBN : 3319939467
- Language : En, Es, Fr & De

After a short introduction to the fundamentals, this book provides a detailed account of major advances in applying fractional calculus to dynamical systems. Fractional order dynamical systems currently continue to gain further importance in many areas of science and engineering. As with many other approaches to mathematical modeling, the first issue to be addressed is the need to couple a definition of the fractional differentiation or integration operator with the types of dynamical systems that are analyzed. As such, for the fundamentals the focus is on basic aspects of fractional calculus, in particular stability analysis, which is required to tackle synchronization in coupled fractional order systems, to understand the essence of estimators for related integer order systems, and to keep track of the interplay between synchronization and parameter observation. This serves as the common basis for the more advanced topics and applications presented in the subsequent chapters, which include an introduction to the 'Immersion and Invariance' (I&I) methodology, the masterslave synchronization scheme for partially known nonlinear fractional order systems, Fractional Algebraic Observability (FAO) and Fractional Generalized quasi-Synchronization (FGqS) to name but a few. This book is intended not only for applied mathematicians and theoretical physicists, but also for anyone in applied science dealing with complex nonlinear systems.

**Fractional Order Systems**

Optimization, Control, Circuit Realizations and Applications

#### by **Ahmad Taher Azar,Ahmed G. Radwan,Sundarapandian Vaidyanathan**

- Publisher : Academic Press
- Release : 2018-08-16
- Pages : 741
- ISBN : 0128163089
- Language : En, Es, Fr & De

Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems based on the new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many of the applications in the book

**Fractional Order Control and Synchronization of Chaotic Systems**

A Book

#### by **Ahmad Taher Azar,Sundarapandian Vaidyanathan,Adel Ouannas**

- Publisher : Springer
- Release : 2018-07-21
- Pages : 877
- ISBN : 9783319843568
- Language : En, Es, Fr & De

The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional control and stability, the book also discusses key applications of fractional order chaotic systems, as well as multidisciplinary solutions developed via control modeling. As such, it offers the perfect reference guide for graduate students, researchers and practitioners in the areas of fractional order control systems and fractional order chaotic systems.

**Exam Prep for: Mathematical Techniques of Fractional Order ...**

A Book

#### by **Anonim**

- Publisher : Unknown Publisher
- Release : 2021
- Pages : 329
- ISBN : 9876543210XXX
- Language : En, Es, Fr & De

**Analysis, Modeling, and Stability of Fractional Order Differential Systems 2**

The Infinite State Approach

#### by **Jean-Claude Trigeassou,Nezha Maamri**

- Publisher : John Wiley & Sons
- Release : 2020-01-09
- Pages : 426
- ISBN : 1786304554
- Language : En, Es, Fr & De

This book introduces an original fractional calculus methodology (the infinite state approach) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation. With this approach, fundamental issues such as system state interpretation and system initialization – long considered to be major theoretical pitfalls – have been solved easily. Although originally introduced for numerical simulation and identification of FDEs, this approach also provides original solutions to many problems such as the initial conditions of fractional derivatives, the uniqueness of FDS transients, formulation of analytical transients, fractional differentiation of functions, state observation and control, definition of fractional energy, and Lyapunov stability analysis of linear and nonlinear fractional order systems. This second volume focuses on the initialization, observation and control of the distributed state, followed by stability analysis of fractional differential systems.