Download Fuel Cell Electric Vehicles Ebook PDF

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition
A Book

by Mehrdad Ehsani,Yimin Gao,Stefano Longo,Kambiz Ebrahimi

  • Publisher : CRC Press
  • Release : 2018-02-02
  • Pages : 546
  • ISBN : 0429998236
  • Language : En, Es, Fr & De
GET BOOK

The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results.

Hybrid, Electric, and Fuel-Cell Vehicles

Hybrid, Electric, and Fuel-Cell Vehicles
A Book

by Jack Erjavec

  • Publisher : Cengage Learning
  • Release : 2012-06-06
  • Pages : 400
  • ISBN : 1285415051
  • Language : En, Es, Fr & De
GET BOOK

HYBRID, ELECTRIC AND FUEL-CELL VEHICLES, Second Edition, covers the cutting-edge technology and technology that are revolutionizing today's automotive industry. Author Jack Erjavec combines in-depth industry expertise with an engaging, reader-friendly style, providing extensive detail on new and upcoming electric vehicles, including hybrids in production today and the fuel cell vehicles of tomorrow. Expansive coverage ranges from basic theory related to vehicle construction, electricity, batteries, and motors, to the political and social impact of these high-profile vehicles. In addition to up-to-date, highly accurate technical information on vehicles available today—including service procedures and safe shop practices—the text provides an informed look into the future with material on vehicles currently under development. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Fuel Cell Electric Vehicles

Fuel Cell Electric Vehicles
Technology and Designs

by Robert Steinberger-Wilckens,Thomas Von Unwerth,John Jostins

  • Publisher : Academic Press
  • Release : 2021-02-15
  • Pages : 352
  • ISBN : 9780128191569
  • Language : En, Es, Fr & De
GET BOOK

Fuel Cell Electric Vehicles: Technology and Designs provides an overview of the current state-of-the-art, with detailed insights into the design and concept of electric fuel cell vehicles down to single components. It considers the role of FCEVs for sustainable mobility and explores the most recent developments in the field, looking into the steps involved in designing and building those vehicles, including drive trains, batteries, fuel systems, fuel cell technology, safety, market introduction and commercial deployment. Throughout its chapters, the book presents case studies, examples, problems and exercises that allow better understanding of the applied aspects of each topic. This is a useful technical reference for junior engineering and energy researchers, as well as practicing engineers, looking to design and develop technology for FCEVs. Masters and PhD students specializing in energy technologies for vehicles in general, and FCEVs in particular, and final year engineering undergraduates, can use this as an introductory textbook. It can also be used as a core reference in university and industry courses on this topic. Provides firm theoretical background on aspects involved in the design, development and deployment of energy technology for fuel cell electric vehicles Offers a comprehensive overview of technology applications, including case studies, real-life examples, problems and exercises Presents insights on future applications of fuel cells technology in vehicles and their market and infrastructure aspects

Electric Powertrain

Electric Powertrain
Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles

by John G. Hayes,G. Abas Goodarzi

  • Publisher : John Wiley & Sons
  • Release : 2018-02-05
  • Pages : 560
  • ISBN : 1119063647
  • Language : En, Es, Fr & De
GET BOOK

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
Fundamentals, Theory, and Design, Second Edition

by Mehrdad Ehsani,Yimin Gao,Ali Emadi

  • Publisher : CRC Press
  • Release : 2017-12-19
  • Pages : 557
  • ISBN : 1420054007
  • Language : En, Es, Fr & De
GET BOOK

Air pollution, global warming, and the steady decrease in petroleum resources continue to stimulate interest in the development of safe, clean, and highly efficient transportation. Building on the foundation of the bestselling first edition, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition updates and expands its detailed coverage of the vehicle technologies that offer the most promising solutions to these issues affecting the automotive industry. Proven as a useful in-depth resource and comprehensive reference for modern automotive systems engineers, students, and researchers, this book speaks from the perspective of the overall drive train system and not just its individual components. New to the second edition: A case study appendix that breaks down the Toyota Prius hybrid system Corrections and updates of the material in the first edition Three new chapters on drive train design methodology and control principles A completely rewritten chapter on Fundamentals of Regenerative Braking Employing sufficient mathematical rigor, the authors comprehensively cover vehicle performance characteristics, EV and HEV configurations, control strategies, modeling, and simulations for modern vehicles. They also cover topics including: Drive train architecture analysis and design methodologies Internal Combustion Engine (ICE)-based drive trains Electric propulsion systems Energy storage systems Regenerative braking Fuel cell applications in vehicles Hybrid-electric drive train design The first edition of this book gave practicing engineers and students a systematic reference to fully understand the essentials of this new technology. This edition introduces newer topics and offers deeper treatments than those included in the first. Revised many times over many years, it will greatly aid engineers, students, researchers, and other professionals who are working in automotive-related industries, as well as those in government and academia.

Modern Electric Hybrid Electric and Fuel Cell Vehicles Third Edition

Modern Electric Hybrid Electric and Fuel Cell Vehicles Third Edition
A Book

by Taylor & Francis Group

  • Publisher : Unknown Publisher
  • Release : 2018-08-10
  • Pages : 329
  • ISBN : 9781138330498
  • Language : En, Es, Fr & De
GET BOOK

Impacting Rapaid Hydrogen Fuel Cell Electric Vehicle Commercialization

Impacting Rapaid Hydrogen Fuel Cell Electric Vehicle Commercialization
System Cost Reduction and Subcomponent Performance Enhancement

by David Wood

  • Publisher : Unknown Publisher
  • Release : 2016-07
  • Pages : 277
  • ISBN : 9780768082562
  • Language : En, Es, Fr & De
GET BOOK

The chapters in this book are based on papers covering various qualities of fuel cells. They address topics including barriers to the market introduction of alternative vehicles and ways to address these challenges, retail infrastructure cost comparison of hydrogen and electricity, a conductive carbon coating on 316L stainless steel for bipolar plates for the polymer electrolyte membrane fuel cell (PEMFC), chemical hydrides for hydrogen storage, hydrogen sensors, a simulation model for comparing on-board hydrogen storage technologies, an air supply system, a hybrid electric system for a hydrogen fuel cell vehicle and its energy management, a control system for sensing differential pressure between air and hydrogen in a polymer electrolyte fuel cell (PEFC), and optimization of a fuel cell hybrid vehicle powertrain design.

Impacting Rapid Hydrogen Fuel Cell Electric Vehicle (FCEV) Commercialization

Impacting Rapid Hydrogen Fuel Cell Electric Vehicle (FCEV) Commercialization
System Cost Reduction and Subcomponent Performance Enhancement

by David L. Wood

  • Publisher : Unknown Publisher
  • Release : 2016
  • Pages : 329
  • ISBN : 9780768083019
  • Language : En, Es, Fr & De
GET BOOK

Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range and fast refueling times. FCEVs face several remaining challenges in order to achieve widespread commercialisation. Many of the challenges are addressed in this book.

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles
A Book

by David Woo

  • Publisher : Unknown Publisher
  • Release : 2016
  • Pages : 206
  • ISBN : 9780768088878
  • Language : En, Es, Fr & De
GET BOOK

Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over batter.

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet).

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet).
A Book

by Anonim

  • Publisher : Unknown Publisher
  • Release : 2011
  • Pages : 2
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
A Book

by Mehrdad Ehsani,Yimin Gao,Stefano Longo,Kambiz Ebrahimi

  • Publisher : CRC Press
  • Release : 2018-02-02
  • Pages : 546
  • ISBN : 0429998244
  • Language : En, Es, Fr & De
GET BOOK

"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

Improving Fuel Economy Via Management of Auxiliary Loads in Fuel-cell Electric Vehicles

Improving Fuel Economy Via Management of Auxiliary Loads in Fuel-cell Electric Vehicles
A Book

by Christopher Paul Lawrence

  • Publisher : Unknown Publisher
  • Release : 2007
  • Pages : 124
  • ISBN : 9780494352748
  • Language : En, Es, Fr & De
GET BOOK

The automotive industry is in a state of flux at the moment. Traditional combustion engine technologies are becoming challenged by newer, more efficient and environmentally friendly propulsion methods. These include bio-fuel, hybrid, and hydrogen fuel-cell technologies. Propulsion alone, however, is not the only area where improvements can be made in vehicle efficiency. Current vehicle research and development focuses heavily on propulsion systems with relatively few resources dedicated to auxiliary systems. These auxiliary systems, however, can have a significant impact on overall vehicle efficiency and fuel economy. The objective of this work is to improve the efficiency of a Fuel Cell Electric Vehicle (FCEV) through intelligent auxiliary system control. The analysis contained herein is applicable to all types of vehicles and may find applications in many vehicle architectures. A survey is made of the various types of alternative fuels and vehicle architectures from conventional gasoline vehicles to hybrids and fuel cells. Trends in auxiliary power systems and previous papers on control of these systems are discussed. The FCEV developed by the University of Waterloo Alternative Fuels Team (UWAFT) is outlined and the design process presented. Its powertrain control strategy is analyzed with a proposal for modifications as well as the addition of an auxiliary control module to meet the aforementioned objectives. Simulations are performed to predict the efficiency and fuel economy gains that can potentially be realized using these proposed techniques. These gains prove to be significant, with an almost 2% improvement realized through intelligent control of the air conditioning compressor, and further gains possible through other auxiliary power reduction techniques.

Electric Vehicle Technology Explained

Electric Vehicle Technology Explained
A Book

by James Larminie,John Lowry

  • Publisher : John Wiley & Sons
  • Release : 2012-07-11
  • Pages : 344
  • ISBN : 1118361121
  • Language : En, Es, Fr & De
GET BOOK

Fully updated throughout, Electric Vehicle Technology, SecondEdition, is a complete guide to the principles, design andapplications of electric vehicle technology. Including all thelatest advances, it presents clear and comprehensive coverage ofthe major aspects of electric vehicle development and offers anengineering-based evaluation of electric motor scooters, cars,buses and trains. This new edition includes: important new chapters on types of electric vehicles, includingpickup and linear motors, overall efficiencies and energyconsumption, and power generation, particularly for zero carbonemissions expanded chapters updating the latest types of EV, types ofbatteries, battery technology and other rechargeable devices, fuelcells, hydrogen supply, controllers, EV modeling, ancillary systemdesign, and EV and the environment brand new practical examples and case studies illustrating howelectric vehicles can be used to substantially reduce carbonemissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains anddevelopments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption andsustainable power generation. MATLAB® examples can be found on the companion website ahref="http://www.wiley.com/go/electricvehicle2e"www.wiley.com/go/electricvehicle2e/a Explaining the underpinning science and technology, this book isessential for practicing electrical, automotive, power, control andinstrumentation engineers working in EV research and development.It is also a valuable reference for academics and students inautomotive, mechanical, power and electrical engineering.

Unsettled Issues Concerning the Use of Fuel Cells in Electric Ground Vehicles

Unsettled Issues Concerning the Use of Fuel Cells in Electric Ground Vehicles
A Book

by Bart Kolodziejczyk

  • Publisher : Sae Edge Research Report
  • Release : 2019-10-29
  • Pages : 30
  • ISBN : 9781468601015
  • Language : En, Es, Fr & De
GET BOOK

Hydrogen fuel is rapidly emerging as a clean energy carrier solution that has the potential to decarbonize a variety of industries, including, or predominantly, the transportation industry. Fuel cell electric vehicles (FCEVs), which electrochemically combine stored hydrogen with atmospheric oxygen to efficiently generate electricity while producing only water vapor and small amounts of heat, are heralded to be a game-changing technology. The so-called hydrogen economy has the potential to displace traditional fossil fuel-based economy, with the transportation industry being the first mover in the hydrogen space. Technological advances made in the last decade in the areas of hydrogen generation and fuel cell technology have enabled the current uptake of hydrogen-based solutions for vehicle applications. Reduced costs, climate change, and carbon tax mechanisms are driving many governments, manufacturers, and consumers toward hydrogen-powered vehicles. The major drawbacks of hydrogen compared to the other competing clean-energy technologies (e.g., battery power), is the high cost of hydrogen refueling and FCEVs. However, application of the economy of scale will enable further cost reduction and broad international uptake of hydrogen in automotive applications. This SAE EDGE(TM) Research Report explores the opportunities and challenges of hydrogen and fuel cell systems in the automotive industry. With the help of expert contributors, several different technological, economic, and safety aspects are considered to develop a better understanding of this emerging hydrogen-based automotive industry. While debates between proponents of battery electric vehicles (BEVs) and FCEVs continue, the current report discusses the unsettled issues in the latter technology and presents a critical overview of the hydrogen and fuel cell systems in the automotive industry. Finally, the report concludes with a series of recommendations aimed at the industry and government stakeholders for implementing and advancing hydrogen transportation projects. NOTE: SAE EDGE(TM) Research Reports are intended to identify and illuminate critical issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE(TM) Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE(TM) Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny.

Hybrid Electric Vehicles

Hybrid Electric Vehicles
Principles and Applications with Practical Perspectives

by Chris Mi,M. Abul Masrur

  • Publisher : John Wiley & Sons
  • Release : 2017-11-29
  • Pages : 600
  • ISBN : 111897056X
  • Language : En, Es, Fr & De
GET BOOK

The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.

GB/T 24548-2009: Translated English of Chinese Standard. (GBT 24548-2009, GB/T24548-2009, GBT24548-2009)

GB/T 24548-2009: Translated English of Chinese Standard. (GBT 24548-2009, GB/T24548-2009, GBT24548-2009)
Fuel cell electric vehicles - Terminology

by www.ChineseStandard.net

  • Publisher : https://www.chinesestandard.net
  • Release : 2016-07-29
  • Pages : 15
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

This Standard specified the relevant terms and definitions of fuel cell electric vehicles. This Standard applies to electric vehicles and components which use gaseous hydrogen fuel cell.

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
Fundamentals, Theory, and Design

by Mehrdad Ehsani,Yimin Gao,Sebastien E. Gay,Ali Emadi

  • Publisher : CRC Press
  • Release : 2004-12-20
  • Pages : 424
  • ISBN : 1420037730
  • Language : En, Es, Fr & De
GET BOOK

Air quality is deteriorating, the globe is warming, and petroleum resources are decreasing. The most promising solutions for the future involve the development of effective and efficient drive train technologies. This comprehensive volume meets this challenge and opportunity by integrating the wealth of disparate information found in scattered pape

ליאורה תנורי קב-ונקי 2009-1965

ליאורה תנורי קב-ונקי 2009-1965

by Anonim

  • Publisher : Unknown Publisher
  • Release : 2010
  • Pages : 329
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Battery and Fuel Cell Electric Vehicles in the Context of the Energy Transition

Battery and Fuel Cell Electric Vehicles in the Context of the Energy Transition
Cross-sectoral Assessment of Electric Vehicles in Germany and California

by Markus Felgenhauer

  • Publisher : Unknown Publisher
  • Release : 2016
  • Pages : 329
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Modeling of Fuel Cell Hybrid Electric Vehicles

Modeling of Fuel Cell Hybrid Electric Vehicles
A Book

by Charbel El Hachem

  • Publisher : Unknown Publisher
  • Release : 2012
  • Pages : 41
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK