Download Hybrid Energy System Models Ebook PDF

Hybrid Energy System Models

Hybrid Energy System Models
A Book

by Asmae Berrada,Rachid El Mrabet

  • Publisher : Academic Press
  • Release : 2020-12-04
  • Pages : 382
  • ISBN : 012821404X
  • Language : En, Es, Fr & De
GET BOOK

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Hybrid Energy System Modeling in Modelica

Hybrid Energy System Modeling in Modelica
A Book

by Anonim

  • Publisher : Unknown Publisher
  • Release : 2014
  • Pages : 329
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

Improved System Models for Building-integrated Hybrid Renewable Energy Systems with Advanced Storage

Improved System Models for Building-integrated Hybrid Renewable Energy Systems with Advanced Storage
A Combined Experimental and Simulation Approach

by Lars Baumann

  • Publisher : Unknown Publisher
  • Release : 2015
  • Pages : 329
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Wind Solar Hybrid Renewable Energy System

Wind Solar Hybrid Renewable Energy System
A Book

by Kenneth Eloghene Okedu,Ahmed Tahour,Abdel Ghani Aissaoui

  • Publisher : BoD – Books on Demand
  • Release : 2020-02-26
  • Pages : 252
  • ISBN : 1789845904
  • Language : En, Es, Fr & De
GET BOOK

This book provides a platform for scientists and engineers to comprehend the technologies of solar wind hybrid renewable energy systems and their applications. It describes the thermodynamic analysis of wind energy systems, and advanced monitoring, modeling, simulation, and control of wind turbines. Based on recent hybrid technologies considering wind and solar energy systems, this book also covers modeling, design, and optimization of wind solar energy systems in conjunction with grid-connected distribution energy management systems comprising wind photovoltaic (PV) models. In addition, solar thermochemical fuel generation topology and evaluation of PV wind hybrid energy for a small island are also included in this book. Since energy storage plays a vital role in renewable energy systems, another salient part of this book addresses the methodology for sizing hybrid battery-backed power generation systems in off-grid connected locations. Furthermore, the book proposes solutions for sustainable rural development via passive solar housing schemes, and the impacts of renewable energies in general, considering social, economic, and environmental factors. Because this book proposes solutions based on recent challenges in the area of hybrid renewable technologies, it is hoped that it will serve as a useful reference to readers who would like to be acquainted with new strategies of control and advanced technology regarding wind solar hybrid systems

Strategy and Gaps for Modeling, Simulation, and Control of Hybrid Systems

Strategy and Gaps for Modeling, Simulation, and Control of Hybrid Systems
A Book

by Anonim

  • Publisher : Unknown Publisher
  • Release : 2015
  • Pages : 56
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.

Wind Power Electric Systems

Wind Power Electric Systems
Modeling, Simulation and Control

by Djamila Rekioua

  • Publisher : Springer Science & Business
  • Release : 2014-04-16
  • Pages : 202
  • ISBN : 1447164253
  • Language : En, Es, Fr & De
GET BOOK

The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies. Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems. Mathematical models are provided for each system and a corresponding MATLAB/SIMULINK example is included at the end of each section in order to demonstrate key processes and methods.

Informing Energy and Climate Policies Using Energy Systems Models

Informing Energy and Climate Policies Using Energy Systems Models
Insights from Scenario Analysis Increasing the Evidence Base

by George Giannakidis,Maryse Labriet,Brian Ó Gallachóir,GianCarlo Tosato

  • Publisher : Springer
  • Release : 2015-04-06
  • Pages : 426
  • ISBN : 3319165402
  • Language : En, Es, Fr & De
GET BOOK

This book highlights how energy-system models are used to underpin and support energy and climate mitigation policy decisions at national, multi-country and global levels. It brings together, for the first time in one volume, a range of methodological approaches and case studies of good modeling practice on a national and international scale from the IEA-ETSAP energy technology initiative. It provides insights for the reader into the rich and varied applications of energy-system models and the underlying methodologies and policy questions they can address. The book demonstrates how these models are used to answer complex policy questions, including those relating to energy security, climate change mitigation and the optimal allocation of energy resources. It will appeal to energy engineers and technology specialists looking for a rationale for innovation in the field of energy technologies and insights into their evolving costs and benefits. Energy economists will gain an understanding of the key future role of energy technologies and policy makers will learn how energy-system modeling teams can provide unique perspectives on national energy and environment challenges. The book is carefully structured into three parts which focus on i) policy decisions that have been underpinned by energy-system models, ii) specific aspects of supply and end-use sector modeling, including technology learning and behavior and iii) how additional insights can be gained from linking energy-system models with other models. The chapters elucidate key methodological features backed up with concrete applications. The book demonstrates the high degree of flexibility of the modeling tools used to represent extremely different energy systems, from national to global levels.

Modeling of Photovoltaic Systems Using MATLAB

Modeling of Photovoltaic Systems Using MATLAB
Simplified Green Codes

by Tamer Khatib,Wilfried Elmenreich

  • Publisher : John Wiley & Sons
  • Release : 2016-07-12
  • Pages : 240
  • ISBN : 1119118107
  • Language : En, Es, Fr & De
GET BOOK

Provides simplified MATLAB codes for analysis of photovoltaic systems, describes the model of the whole photovoltaic power system, and shows readers how to build these models line by line. This book presents simplified coded models for photovoltaic (PV) based systems using MATLAB to help readers understand the dynamic behavior of these systems. Through the use of MATLAB, the reader has the ability to modify system configuration, parameters and optimization criteria. Topics covered include energy sources, storage, and power electronic devices. This book contains six chapters that cover systems’ components from the solar source to the end-user. Chapter 1 discusses modelling of the solar source, and Chapter 2 discusses modelling of the photovoltaic source. Chapter 3 focuses on modeling of PV systems’ power electronic features and auxiliary power sources. Modeling of PV systems’ energy flow is examined in Chapter 4, while Chapter 5 discusses PV systems in electrical power systems. Chapter 6 presents an application of PV system models in systems’ size optimization. Common control methodologies applied to these systems are also modeled. Covers the basic models of the whole photovoltaic power system, enabling the reader modify the models to provide different sizing and control methodologies Examines auxiliary components to photovoltaic systems, including wind turbines, diesel generators, and pumps Contains examples, drills and codes Modeling of Photovoltaic Systems Using MATLAB: Simplified Green Codes is a reference forresearchers, students, and engineers who work in the field of renewable energy, and specifically in photovoltaic systems.

Small Signal Analysis of Isolated Hybrid Power Systems

Small Signal Analysis of Isolated Hybrid Power Systems
Reactive Power and Frequency Control Analysis

by R. C. Bansal,T. S. Bhatti

  • Publisher : Alpha Science International, Limited
  • Release : 2008
  • Pages : 232
  • ISBN : 9781842654804
  • Language : En, Es, Fr & De
GET BOOK

Small Signal Analysis of Isolated Hybrid Power Systems: Reactive Power and Frequency Control Analysis discusses automatic reactive power control of autonomous hybrid power system modelling based on power equations. The modelling can be easily extendable to an autonomous hybrid power system having multi machines system. To test the proposed reactive power control system, state space models of wind-diesel, wind-multi-diesel, multi-wind-diesel, and wind-diesel-micro-hydro using the three different types of SVC models have been developed on the basis of small signal analysis. Simulation studies have been carried out on different examples of hybrid power systems for deterministic and realistic disturbances in load and/or input wind power. The book discusses optimum gain settings of the controllers for step disturbances in input wind and/or in reactive power load and observations obtained from the responses of the system considered under optimum gain settings. ANN models have been developed for different autonomous hybrid power system configurations for tuning the proportional-integral controller of SVC for optimum performance.

Hybrid Energy Systems for Offshore Applications

Hybrid Energy Systems for Offshore Applications
A Book

by Ibrahim Dincer,Valerio Cozzani,Anna Crivellari

  • Publisher : Elsevier
  • Release : 2021-05-15
  • Pages : 328
  • ISBN : 0323903657
  • Language : En, Es, Fr & De
GET BOOK

There has been a strong need to enhance the utilization of renewable energy systems (RESs) from onshore to offshore applications where oil and gas companies are pivoting to integrate such renewable energy options into their offshore operations to lower their carbon footprint, extend the lifetime of their assets, and expand their market. In this regard, innovative hybrid energy systems, such as “Power to Gas (P2G) and “Power to Liquid (P2L) options, as well as novel integration strategies for “Gas to Power (G2P) systems, offer the opportunity to implement solutions energy transition, paving the way to offshore RES deployment. Hybrid Energy Systems for Offshore Applications delivers a comprehensive presentation of state of the art and perspective developments of offshore RES exploitation strategies and technologies, and provides a unique portfolio of decision-making methodologies supporting the selection of the most suitable options for offshore renewable energy production at a specific site. System modeling and analysis along with the definitions of multicriteria methodologies and strategies based on sustainability, environmental impact, and safety performance indicators are addressed in an integrated fashion. Rounding out with both research and practical applications explained, this book gives academicians and industrial professionals fundamentals and methods for integrated performance analysis of innovative systems addressing offshore RES exploitation, sustainable chemical and power production, better efficiency, lower costs, lower environmental impact, and higher inherent safety. Harmonized presentation of RESs Unique coverage on hybrid energy systems and their offshore applications Comprehensive thermodynamic analysis and evaluation of the developed systems Process and system modeling, analysis, and decision-making methodologies for offshore P2G, P2L, and G2P solutions Sustainability modeling and assessment studies for various offshore applications Distinct parametric studies, illustrations, and case studies Specific sustainability and safety performance indicators for comparative evaluations

Hybrid Energy Systems

Hybrid Energy Systems
Strategy for Industrial Decarbonization

by Yatish T. Shah

  • Publisher : CRC Press
  • Release : 2021-04-05
  • Pages : 536
  • ISBN : 1000368564
  • Language : En, Es, Fr & De
GET BOOK

Hybrid Energy Systems: Strategy for Industrial Decarbonization demonstrates how hybrid energy and processes can decarbonize energy industry needs for power and heating and cooling. It describes the role of hybrid energy and processes in nine major industry sectors and discusses how hybrid energy can offer sustainable solutions in each. Introduces the basics and examples of hybrid energy systems Examines hybrid energy and processes in coal, oil and gas, nuclear, building, vehicle, manufacturing and industrial processes, computing and portable electronic, district heating and cooling, and water sectors Shows that hybrid processes can improve efficiency and that hybrid energy can effectively insert renewable fuels in the energy industry Serves as a companion text to the author’s book Hybrid Power: Generation, Storage, and Grids Written for advanced students, researchers, and industry professionals involved in energy-related processes and plants, this book offers latest research and practical strategies for application of the innovative field of hybrid energy.

Stand-Alone and Hybrid Wind Energy Systems

Stand-Alone and Hybrid Wind Energy Systems
Technology, Energy Storage and Applications

by J K Kaldellis

  • Publisher : Elsevier
  • Release : 2010-07-27
  • Pages : 576
  • ISBN : 1845699629
  • Language : En, Es, Fr & De
GET BOOK

Wind power is fast becoming one of the leading renewable energy sources worldwide, not only from large scale wind farms but also from the increasing penetration of stand-alone and hybrid wind energy systems. These systems are primarily of benefit in small-scale applications, especially where there is no connection to a central electricity network, and where there are limited conventional fuel resources but available renewable energy resources. By applying appropriate planning, systems selection and sizing, including the integration of energy storage devices to mitigate variable energy generation patterns, theses systems can supply secure reliable and economic power to remote locations and distributed micro-grids. Stand-alone and hybrid wind energy systems is a synthesis of the most recent knowledge and experience on wind-based hybrid renewable energy systems, comprehensively covering the scientific, technical and socio-economic issues involved in the application of these systems. Part one presents an overview of the fundamental science and engineering of stand-alone and hybrid wind energy systems and energy storage technology, including design and performance optimisation methods and feasibility assessment for these systems. Part two initially reviews the design, development, operation and optimisation of stand-alone and hybrid wind energy systems – including wind-diesel, wind -photovoltaic (PV), wind-hydrogen, and wind-hydropower energy systems – before moving on to examine applicable energy storage technology, including electro-chemical, flywheel (kinetic) and compressed air energy storage technologies. Finally, Part three assesses the integration of stand-alone and hybrid wind energy systems and energy technology into remote micro-grids and buildings, and their application for desalination systems. With its distinguished editor and international team of contributors, Stand-alone and hybrid wind energy systems is a standard reference for all renewable energy professionals, consultants, researchers and academics from post-graduate level up. Provides an overview of the fundamental science and engineering of stand-alone hybrid and wind energy systems, including design and performance optimisation methods Reviews the development and operation of stand-alone and hybrid wind energy systems Assesses the integration of stand-alone and hybrid wind energy systems and energy storage technology into remote micro-grids and buildings, and their application for desalination systems

Regenerative Air Energy Storage for Renewable Energy Integration

Regenerative Air Energy Storage for Renewable Energy Integration
System Modeling and Optimization

by Sebastian Callaghan Manchester

  • Publisher : Unknown Publisher
  • Release : 2014
  • Pages : 220
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

ABSTRACT: As energy systems shift away from fossil-fuel based electricity, the non-dispatchability of renewable energy converters (REC) continue to stress the grid infrastructure and conventional thermal generating units. These hybrid electricity systems require energy storage systems to buffer the variabilities of electricity supply and demand. Regenerative air energy storage (RAES) is an emerging technology that shows promise to overcome the barriers of REC variability. RAES uses a novel compressor/expander that approaches isothermal operation by spraying water into the piston/cylinder to absorb/release heat. RAES can be sized for power and energy independently, and has a high round-trip efficiency that can be boosted using low grade waste heat. Because of its novelty, new numerical models are necessary to investigate the sizing and performance of RAES systems. In this thesis a numerical simulation tool is developed to allow flexible and intuitive analysis of a range of hybrid energy systems involving RAES.

Solar Energy

Solar Energy
Technologies, Design, Modeling, and Economics

by Ibrahim Moukhtar

  • Publisher : Springer Nature
  • Release : 2021
  • Pages : 329
  • ISBN : 3030613070
  • Language : En, Es, Fr & De
GET BOOK

Solar PV and Wind Energy Conversion Systems

Solar PV and Wind Energy Conversion Systems
An Introduction to Theory, Modeling with MATLAB/SIMULINK, and the Role of Soft Computing Techniques

by S. Sumathi,L. Ashok Kumar,P. Surekha

  • Publisher : Springer
  • Release : 2015-04-08
  • Pages : 790
  • ISBN : 3319149415
  • Language : En, Es, Fr & De
GET BOOK

This textbook starts with a review of the principles of operation, modeling and control of common solar energy and wind-power generation systems before moving on to discuss grid compatibility, power quality issues and hybrid models of Solar PV and Wind Energy Conversion Systems (WECS). MATLAB/SIMULINK models of fuel cell technology and associated converters are discussed in detail. The impact of soft computing techniques such as neural networks, fuzzy logic and genetic algorithms in the context of solar and wind energy is explained with practical implementation using MATLAB/SIMULINK models. This book is intended for final year undergraduate, post-graduate and research students interested in understanding the modeling and control of Solar PV and Wind Energy Conversion Systems based on MATLAB/SIMULINK. - Each chapter includes “Learning Objectives” at the start, a “Summary” at the end and helpful Review Questions - Includes MATLAB/SIMULINK models of different control strategies for power conditioning units in the context of Solar PV - Presents soft computing techniques for Solar PV and WECS, as well as MATLAB/SIMULINK models, e.g. for wind turbine topologies and grid integration - Covers hybrid solar PV and Wind Energy Conversion Systems with converters and MATLAB/SIMULINK models - Reviews harmonic reduction in Solar PV and Wind Energy Conversion Systems in connection with power quality issues - Covers fuel cells and converters with implementation using MATLAB/SIMULINK

Hybrid Renewable Energy Systems

Hybrid Renewable Energy Systems
Optimization and Power Management Control

by Djamila Rekioua

  • Publisher : Springer Nature
  • Release : 2019-11-27
  • Pages : 250
  • ISBN : 303034021X
  • Language : En, Es, Fr & De
GET BOOK

This book discusses the supervision of hybrid systems and presents models for control, optimization and storage. It provides a guide for practitioners as well as graduate and postgraduate students and researchers in both renewable energy and modern power systems, enabling them to quickly gain an understanding of stand-alone and grid-connected hybrid renewable systems. The book is accompanied by an online MATLAB package, which offers examples of each application to help readers understand and evaluate the performance of the various hybrid renewable systems cited. With a focus on the different configurations of hybrid renewable energy systems, it offers those involved in the field of renewable energy solutions vital insights into the control, optimization and supervision strategies for the different renewable energy systems.

Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development

Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development
A Book

by George Giannakidis,Kenneth Karlsson,Maryse Labriet,B. Ó Gallachóir

  • Publisher : Springer
  • Release : 2018-03-31
  • Pages : 423
  • ISBN : 3319744240
  • Language : En, Es, Fr & De
GET BOOK

This book presents the energy system roadmaps necessary to limit global temperature increase to below 2°C, in order to avoid the catastrophic impacts of climate change. It provides a unique perspective on and critical understanding of the feasibility of a well-below-2°C world by exploring energy system pathways, technology innovations, behaviour change and the macro-economic impacts of achieving carbon neutrality by mid-century. The transformative changes in the energy transition are explored using energy systems models and scenario analyses that are applied to various cities, countries and at a global scale to offer scientific evidence to underpin complex policy decisions relating to climate change mitigation and interrelated issues like energy security and the energy–water nexus. It includes several chapters directly related to the Nationally Determined Contributions proposed in the context of the recent Paris Agreement on Climate Change. In summary, the book collates a range of concrete analyses at different scales from around the globe, revisiting the roles of countries, cities and local communities in pathways to significantly reduce greenhouse gas emissions and make a well-below-2°C world a reality. A valuable source of information for energy modellers in both the industry and public sectors, it provides a critical understanding of both the feasibility of roadmaps to achieve a well-below-2°C world, and the diversity and wide applications of energy systems models. Encompassing behaviour changes; technology innovations; macro-economic impacts; and other environmental challenges, such as water, it is also of interest to energy economists and engineers, as well as economic modellers working in the field of climate change mitigation.

Dynamic Modeling, Simulation and Control of Energy Generation

Dynamic Modeling, Simulation and Control of Energy Generation
A Book

by Ranjan Vepa

  • Publisher : Springer Science & Business Media
  • Release : 2013-09-11
  • Pages : 373
  • ISBN : 1447154002
  • Language : En, Es, Fr & De
GET BOOK

This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy. A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their applications in the field of energy generation, its control and regulation. This book will help the reader understand the methods of modelling energy systems for controller design application as well as gain a basic understanding of the processes involved in the design of control systems and regulators. It will also be a useful guide to simulation of the dynamics of energy systems and for implementing monitoring systems based on the estimation of internal system variables from measurements of observable system variables. Dynamic Modeling, Simulation and Control of Energy Generation will serve as a useful aid to designers of hybrid power generating systems involving advanced technology systems such as floating or offshore wind turbines and fuel cells. The book introduces case studies of the practical control laws for a variety of energy generation systems based on nonlinear dynamic models without relying on linearization. Also the book introduces the reader to the use nonlinear model based estimation techniques and their application to energy systems.

Nuclear Hybrid Energy System Modeling

Nuclear Hybrid Energy System Modeling
RELAP5 Dynamic Coupling Capabilities

by Anonim

  • Publisher : Unknown Publisher
  • Release : 2012
  • Pages : 329
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Modeling and Simulation of Energy Systems

Modeling and Simulation of Energy Systems
A Book

by Thomas A. Adams II

  • Publisher : MDPI
  • Release : 2019-11-06
  • Pages : 494
  • ISBN : 3039215183
  • Language : En, Es, Fr & De
GET BOOK

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.