Download Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy Ebook PDF

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy
A Book

by Peder Larson

  • Publisher : Elsevier
  • Release : 2021-12-10
  • Pages : 294
  • ISBN : 0128222697
  • Language : En, Es, Fr & De
GET BOOK

MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. Presents the physics and hardware of dissolution dynamic nuclear polarization Explains the behaviour of hyperpolarized carbon-13 agents and how to image them Detailed guidance on experimental design and data interpretation Identifies promising and potential applications of hyperpolarized carbon-13 MR

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy
A Book

by Peder Larson

  • Publisher : Academic Press
  • Release : 2021-11-26
  • Pages : 296
  • ISBN : 0128222700
  • Language : En, Es, Fr & De
GET BOOK

MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It’s primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. Presents the physics and hardware of dissolution dynamic nuclear polarization Explains the behaviour of hyperpolarized carbon-13 agents and how to image them Detailed guidance on experimental design and data interpretation Identifies promising and potential applications of hyperpolarized carbon-13 MR

Hyperpolarized Carbon-13 Magnetic Resonance Imaging as a Tool for Assessing Lung Transplantation Outcomes

Hyperpolarized Carbon-13 Magnetic Resonance Imaging as a Tool for Assessing Lung Transplantation Outcomes
A Book

by Sarmad Siddiqui

  • Publisher : Unknown Publisher
  • Release : 2019
  • Pages : 378
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Lung transplantation is the established treatment for patients with chronic, end-stage lung diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and cystic fibrosis (CF). However, its utility remains limited by the chronic shortage of donor lungs, limited lung preservation strategies and post-transplant complications leading to graft failure. Although efforts have been made to expand the limited pool of viable donor lungs via novel preservation strategies such as ex vivo lung perfusion (EVLP), our limited understanding of the mechanism and progression of donor lung injury continues to inhibit our ability to fully exploit these advances to improve lung transplant outcomes. Furthermore, the clinical standard for post-transplant assessment is limited to whole lung measurement such as pulmonary functional tests (PFTs) and structural imaging via radiography or HRCT, both of which lack the necessary sensitivity to detect lung rejection early. Given these limitations of currently available pre- and post-transplant lung assessment tools, a novel metabolic biomarker may provide higher sensitivity for determining the viability of donated lungs, as well as for assessing the onset of rejection before permanent structural changes in the lungs become apparent. We proposed that hyperpolarized (HP) [1-13C]pyruvate magnetic resonance imaging (MRI)--which provides real-time metabolic assessment of tissue based on the conversion of [1-13C] pyruvate to [1-13C]lactate via glycolysis, or to 13C bicarbonate via oxidative phosphorylation--may be an effective tool for assessing the health of donated lungs and may also serve as an early biomarker for detecting pulmonary graft dysfunction (PGD)-associated inflammation or acute lung rejection. In a rat model, we demonstrated the feasibility of using HP [1-13C]pyruvate nuclear magnetic resonance (NMR) spectroscopy to assess the viability of ex vivo perfused lungs. We further showed that our technique can be used to measure the improved viability of those lungs after treatment with ascorbic acid. Finally, translating our previously developed technique to in vivo HP [1-13C]pyruvate imaging of an inflamed rat lung, we not only demonstrated its utility for detecting lung transplantation rejection, but found that the HP lactate-to-pyruvate ratio is a better predictor of acute lung rejection in a rat model than computed tomography.

Molecular Imaging

Molecular Imaging
Principles and Practice

by Brian D. Ross,Sanjiv S. Gambhir

  • Publisher : Academic Press
  • Release : 2021-08-09
  • Pages : 1868
  • ISBN : 0128163879
  • Language : En, Es, Fr & De
GET BOOK

The detection and measurement of the dynamic regulation and interactions of cells and proteins within the living cell are critical to the understanding of cellular biology and pathophysiology. The multidisciplinary field of molecular imaging of living subjects continues to expand with dramatic advances in chemistry, molecular biology, therapeutics, engineering, medical physics and biomedical applications. Molecular Imaging: Principles and Practice, Volumes 1 and 2, Second Edition provides the first point of entry for physicians, scientists, and practitioners. This authoritative reference book provides a comprehensible overview along with in-depth presentation of molecular imaging concepts, technologies and applications making it the foremost source for both established and new investigators, collaborators, students and anyone interested in this exciting and important field. The most authoritative and comprehensive resource available in the molecular-imaging field, written by over 170 of the leading scientists from around the world who have evaluated and summarized the most important methods, principles, technologies and data Concepts illustrated with over 600 color figures and molecular-imaging examples Chapters/topics include, artificial intelligence and machine learning, use of online social media, virtual and augmented reality, optogenetics, FDA regulatory process of imaging agents and devices, emerging instrumentation, MR elastography, MR fingerprinting, operational radiation safety, multiscale imaging and uses in drug development This edition is packed with innovative science, including theranostics, light sheet fluorescence microscopy, (LSFM), mass spectrometry imaging, combining in vitro and in vivo diagnostics, Raman imaging, along with molecular and functional imaging applications Valuable applications of molecular imaging in pediatrics, oncology, autoimmune, cardiovascular and CNS diseases are also presented This resource helps integrate diverse multidisciplinary concepts associated with molecular imaging to provide readers with an improved understanding of current and future applications

Functional Imaging in Oncology

Functional Imaging in Oncology
Biophysical Basis and Technical Approaches - Volume 1

by Antonio Luna,Joan C. Vilanova,L. Celso Hygino da Cruz Jr.,Santiago E. Rossi

  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • Pages : 549
  • ISBN : 364240412X
  • Language : En, Es, Fr & De
GET BOOK

In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This well-illustrated two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including preclinical and clinical imaging techniques, based on US, CT, MRI, PET and hybrid modalities. This first volume explains the biophysical basis for these functional imaging techniques and describes the techniques themselves. Detailed information is provided on the imaging of cancer hallmarks, including angiogenesis, tumor metabolism, and hypoxia. The techniques and their roles are then discussed individually, covering the full range of modalities in clinical use as well as new molecular and functional techniques. The value of a multiparametric approach is also carefully considered.

Magnetic Resonance Sensors

Magnetic Resonance Sensors
A Book

by Robert H. Morris,Michael I. Newton

  • Publisher : MDPI
  • Release : 2018-10-04
  • Pages : 222
  • ISBN : 3906980987
  • Language : En, Es, Fr & De
GET BOOK

This book is a printed edition of the Special Issue "Magnetic Resonance Sensors" that was published in Sensors

Exploring Cancer Metabolic Reprogramming through Molecular Imaging

Exploring Cancer Metabolic Reprogramming through Molecular Imaging

by Franca Podo,Zaver M. Bhujwalla,Egidio Iorio

  • Publisher : Frontiers Media SA
  • Release : 2017-07-27
  • Pages : 129
  • ISBN : 2889452344
  • Language : En, Es, Fr & De
GET BOOK

The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.

Quantitative MRI in Cancer

Quantitative MRI in Cancer
A Book

by Thomas E. Yankeelov,David R. Pickens,Ronald R. Price

  • Publisher : Taylor & Francis
  • Release : 2011-09-13
  • Pages : 338
  • ISBN : 1439820589
  • Language : En, Es, Fr & De
GET BOOK

Propelling quantitative MRI techniques from bench to bedside, Quantitative MRI in Cancer presents a range of quantitative MRI methods for assessing tumor biology. It includes biophysical and theoretical explanations of the most relevant MRI techniques as well as examples of these techniques in cancer applications. The introductory part of the book covers basic cancer biology, theoretical aspects of NMR/MRI physics, and the hardware required to form MR images. Forming the core of the book, the next three parts illustrate how to characterize tissue properties with endogenous and exogenous contrast mechanisms and discuss common image processing techniques relevant for cancer. The final part explores emerging areas of MR cancer characterization, including radiation therapy planning, cellular and molecular imaging, pH imaging, and hyperpolarized MR. Each of the post-introductory chapters describes the salient qualitative and quantitative aspects of the techniques before proceeding to preclinical and clinical applications. Each chapter also contains references for further study. Leading the way toward more personalized medicine, this text brings together existing and emerging quantitative MRI techniques for assessing cancer. It provides a self-contained overview of the theoretical and experimental essentials and state of the art in cancer MRI.

Advanced Neuro MR Techniques and Applications

Advanced Neuro MR Techniques and Applications
A Book

by In-Young Choi,Peter Jezzard

  • Publisher : Academic Press
  • Release : 2021-11-17
  • Pages : 638
  • ISBN : 0128224959
  • Language : En, Es, Fr & De
GET BOOK

Advanced Neuro MR Techniques and Applications gives detailed knowledge of emerging neuro MR techniques and their specific clinical and neuroscience applications, showing their pros and cons over conventional and currently available advanced techniques. The book identifies the best available data acquisition, processing, reconstruction and analysis strategies and methods that can be utilized in clinical and neuroscience research. It is an ideal reference for MR scientists and engineers who develop MR technologies and/or support clinical and neuroscience research and for high-end users who utilize neuro MR techniques in their research, including clinicians, neuroscientists and psychologists. Trainees such as postdoctoral fellows, PhD and MD/PhD students, residents and fellows using or considering the use of neuro MR technologies will also be interested in this book. Presents a complete reference on advanced Neuro MR Techniques and Applications Edited and written by leading researchers in the field Suitable for a broad audience of MR scientists and engineers who develop MR technologies, as well as clinicians, neuroscientists and psychologists who utilize neuro MR techniques in their research

Dynamic Hyperpolarized Nuclear Magnetic Resonance

Dynamic Hyperpolarized Nuclear Magnetic Resonance
A Book

by Thomas Jue,Dirk Mayer

  • Publisher : Springer Nature
  • Release : 2021-05-21
  • Pages : 279
  • ISBN : 3030550435
  • Language : En, Es, Fr & De
GET BOOK

This is the first book in the series to focus on dynamic hyperpolarized nuclear magnetic resonance, a burgeoning topic in biophysics. The volume follows the format and style of the Handbook of Modern Biophysics series and expands on topics already discussed in previous volumes. It builds a theoretical and experimental framework for students and researchers who wish to investigate the biophysics and biomedical application of dynamic hyperpolarized NMR. All contributors are internationally recognized experts, lead the dynamic hyperpolarized NMR field, and have first-hand knowledge of the chapter material. The book covers the following topics: Hyperpolarization by dissolution Dynamic Nuclear Polarization Design considerations for implementing a hyperpolarizer Chemical Shift Imaging with Dynamic Hyperpolarized NMR Signal Sampling Strategies in Dynamic Hyperpolarized NMR Kinetic Modeling of Enzymatic Reactions in Analyzing Hyperpolarized NMR Data Using Hyperpolarized NMR to Understand Biochemistry from Cells to Humans Innovating Metabolic Biomarkers for Hyperpolarized NMR New Insights into Metabolic Regulation from Hyperpolarized 13C MRS/MRI Studies Novel Views on Heart Function from Dynamic Hyperpolarized NMR Insights on Lactate Metabolism in Skeletal Muscle based on 13C Dynamic Nuclear Polarization Studies About the Editors Dirk Mayer is Professor of Diagnostic Radiology and Nuclear Medicine at the University of Maryland and is the Director of Metabolic Imaging. He is a recognized expert on dynamic nuclear polarization (DNP) MRI-based imaging techniques and has optimized acquisition and reconstruction techniques, has constructed kinetic modeling for quantitative analysis, and has developing new probes. Thomas Jue is Professor of Biochemistry and Molecular Medicine at the University of California Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo. He served as a Chair of the Biophysics Graduate Group Program at UC Davis, where he started to redesign a graduate curriculum that balances physical science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. The Handbook of Modern Biophysics represents an aspect of that effort.

Metabolic Analysis Using Stable Isotopes

Metabolic Analysis Using Stable Isotopes
A Book

by Anonim

  • Publisher : Academic Press
  • Release : 2015-09-21
  • Pages : 402
  • ISBN : 0128025344
  • Language : En, Es, Fr & De
GET BOOK

Metabolic Analysis Using Stable Isotopes, the newest volume in Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in metabolic analysis using stable isotopes. Continues the legacy of this premier serial with quality chapters on metabolic analysis using stable isotopes Represents the newest volume in Methods in Enzymology, providing a premier serial with quality chapters authored by leaders in the field Ideal reference for those interested in the study of metabolism, metabolic tracing, isotopic labeling, and lipogenesis

Handbook of Magnetic Resonance Spectroscopy In Vivo

Handbook of Magnetic Resonance Spectroscopy In Vivo
MRS Theory, Practice and Applications

by Paul A. Bottomley,John R. Griffiths

  • Publisher : John Wiley & Sons
  • Release : 2016-10-19
  • Pages : 1232
  • ISBN : 1118997697
  • Language : En, Es, Fr & De
GET BOOK

This handbook covers the entire field of magnetic resonance spectroscopy (MRS), a unique method that allows the non-invasive identification, quantification and spatial mapping of metabolites in living organisms–including animal models and patients. Comprised of three parts: Methodology covers basic MRS theory, methodology for acquiring, quantifying spectra, and spatially localizing spectra, and equipment essentials, as well as vital ancillary issues such as motion suppression and physiological monitoring. Applications focuses on MRS applications, both in animal models of disease and in human studies of normal physiology and disease, including cancer, neurological disease, cardiac and muscle metabolism, and obesity. Reference includes useful appendices and look up tables of relative MRS signal-to-noise ratios, typical tissue concentrations, structures of common metabolites, and useful formulae. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit the eMagRes Homepage

The EACVI Textbook of Cardiovascular Magnetic Resonance

The EACVI Textbook of Cardiovascular Magnetic Resonance
A Book

by Victor Ferrari

  • Publisher : Oxford University Press
  • Release : 2018-09-13
  • Pages : 550
  • ISBN : 0191085057
  • Language : En, Es, Fr & De
GET BOOK

This highly comprehensive and informed textbook has been prepared by the Cardiovascular Magnetic Resonance section of the European Society of Cardiology association on imaging, the EACVI. The EACVI Textbook of Cardiovascular Magnetic Resonance is the authority on the subject. The textbook is aligned with ESC Core Curriculum and EACVI Core Syllabus for CMR. It is a practical resource and provides a disease orientated outlook on the subject. Structured with thirteen clear and detailed sections, ranging from Physics to Methodology, and featuring specific sections on ischemic heart disease, myocardial disease, pericardial disease, and congenital heart disease and adult congenital heart disease, The EACVI Textbook of Cardiovascular Magnetic Resonance provides extensive knowledge across the entire subject area in CMR. Beautifully illustrated and physical principles enriched with schematic animations, the textbook is advanced further with key video content based on clinical cases. Written by leading experts in the field from across the world, the textbook aims to summarise the existing research and clinical evidence for the various CMR indications and provide an invaluable resource for cardiologists and radiologists across the board. The textbook is ideal for cardiologists and radiologists new to the field of Cardiovascular Magnetic Resonance, those preparing for ESC certification in CMR, and those established in the field wishing to gain a deep understanding of CMR. Online access to the digital version is included with purchase of the print book, with accompanying videos referenced within the text available on Oxford Medicine Online.

Molecular Imaging with Reporter Genes

Molecular Imaging with Reporter Genes
A Book

by Sanjiv Sam Gambhir,Shahriar S. Yaghoubi

  • Publisher : Cambridge University Press
  • Release : 2010-05-31
  • Pages : 129
  • ISBN : 1139489526
  • Language : En, Es, Fr & De
GET BOOK

Reporter genes have been used for several decades to study regulation of gene expression in vivo. However, it was little more than a decade ago that a new class of reporter genes was developed for imaging molecular events within living subjects. By following the interactions of protein molecules, researchers can resolve the complex chemical pathways that living cells utilise. This book focuses on this group of imaging reporter genes, starting with detailed descriptions of all reporter genes from different imaging modalities, including optical, MRI, and radionuclide-based imaging. Key scientists in the field explain how to enhance reporter gene imaging utility through instrumentation and the various applications of this technology. This is the first comprehensive book on all aspects of reporter gene imaging, detailing what is known in the field and future goals for research. Investigators in biomedical sciences, physicians, and the biotechnology and pharmaceutical industries will benefit from topics covered.

Molecular Imaging I

Molecular Imaging I
A Book

by Wolfhard Semmler,Markus Schwaiger

  • Publisher : Springer Science & Business Media
  • Release : 2008-07-15
  • Pages : 280
  • ISBN : 3540727183
  • Language : En, Es, Fr & De
GET BOOK

The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation.

Advanced Cardiac Imaging

Advanced Cardiac Imaging
A Book

by Koen Nieman,Oliver Gaemperli,Patrizio Lancellotti,Sven Plein

  • Publisher : Elsevier
  • Release : 2015-07-16
  • Pages : 804
  • ISBN : 1782422943
  • Language : En, Es, Fr & De
GET BOOK

Advances in Cardiac Imaging presents the latest information on heart disease and heart failure, major causes of death among western populations. In addition, the text explores the financial burden to public healthcare trusts and the vast amount of research and funding being channeled into programs not only to prevent such diseases, but also to diagnose them in early stages. This book provides readers with a thorough overview of many advances in cardiac imaging. Chapters include technological developments in cardiac imaging and imaging applications in a clinical setting with regard to detecting various types of heart disease. Presents a thorough overview of cardiac imaging technology Addresses specific applications for a number of cardiac diseases and how they can improve diagnoses and treatment protocols Includes technological developments in cardiac imaging and imaging applications in a clinical setting

Cardiovascular Magnetic Resonance

Cardiovascular Magnetic Resonance
A Companion to Braunwald’s Heart Disease E-Book

by Warren J. Manning,Dudley J. Pennell

  • Publisher : Elsevier Health Sciences
  • Release : 2018-04-26
  • Pages : 672
  • ISBN : 0323497373
  • Language : En, Es, Fr & De
GET BOOK

Provides state-of-the-art coverage of CMR technologies and guidelines, including basic principles, imaging techniques, ischemic heart disease, right ventricular and congenital heart disease, vascular and pericardium conditions, and functional cardiovascular disease. Includes new chapters on non-cardiac pathology, pacemaker safety, economics of CMR, and guidelines as well as new coverage of myocarditis and its diagnosis and assessment of prognosis by cardiovascular magnetic resonance, and the use of PET/CMR imaging of the heart, especially in sarcoidosis. Features more than 1,100 high-quality images representing today’s CMR imaging. Covers T1, T2 and ECV mapping, as well as T2* imaging in iron overload, which has been shown to save lives in patients with thalassaemia major Discusses the cost-effectiveness of CMR.

Small Animal Imaging

Small Animal Imaging
Basics and Practical Guide

by Fabian Kiessling,Bernd J. Pichler,Peter Hauff

  • Publisher : Springer
  • Release : 2017-05-22
  • Pages : 875
  • ISBN : 3319422022
  • Language : En, Es, Fr & De
GET BOOK

This textbook is a practical guide to the use of small animal imaging in preclinical research that will assist in the choice of imaging modality and contrast agent and in study design, experimental setup, and data evaluation. All established imaging modalities are discussed in detail, with the assistance of numerous informative illustrations. While the focus of the new edition remains on practical basics, it has been updated to encompass a variety of emerging imaging modalities, methods, and applications. Additional useful hints are also supplied on the installation of a small animal unit, study planning, animal handling, and cost-effective performance of small animal imaging. Cross-calibration methods and data postprocessing are considered in depth. This new edition of Small Animal Imaging will be an invaluable aid for researchers, students, and technicians involved in research into and applications of small animal imaging.

Medical Imaging Methods

Medical Imaging Methods
Recent Trends

by Ashutosh Kumar Shukla

  • Publisher : Springer Nature
  • Release : 2019-10-11
  • Pages : 141
  • ISBN : 9811391211
  • Language : En, Es, Fr & De
GET BOOK

This book provides insights into current radiology practices in diagnostic imaging, discussing specific features of individual imaging techniques, such as sensitivity, specificity and accuracy and signal-to-noise ratio. It includes chapters on various established imaging methods as well as emerging methods such as EPR imaging, and their applications in the diagnosis of skin cancer, brain tumors, oral diseases and kidney cysts. Adopting a bottom-up approach and presenting the recent trends in a simple manner with the help of examples, the book appeals to a wide audience, including academics, researchers, medical and nursing students, as well as healthcare professionals in the field of imaging and radiology.

Molecular Imaging in Oncology

Molecular Imaging in Oncology
A Book

by Otmar Schober,Fabian Kiessling,Jürgen Debus

  • Publisher : Springer Nature
  • Release : 2020-06-27
  • Pages : 918
  • ISBN : 3030426181
  • Language : En, Es, Fr & De
GET BOOK

This book discusses the most significant recent advances in oncological molecular imaging, covering the full spectrum from basic and preclinical research to clinical practice. The content is divided into five sections, the first of which is devoted to standardized and emerging technologies and probe designs for different modalities, such as PET, SPECT, optical and optoacoustic imaging, ultrasound, CT, and MRI. The second section focuses on multiscale preclinical applications ranging from advanced microscopy and mass spectroscopy to whole-body imaging. In the third section, various clinical applications are presented, including image-guided surgery and the radiomic analysis of multiple imaging features. The final two sections are dedicated to the emerging, crucial role that molecular imaging can play in the planning and monitoring of external and internal radiotherapy, and to future challenges and prospects in multimodality imaging. Given its scope, the handbook will benefit all readers who are interested in the revolution in diagnostic and therapeutic oncology that is now being brought about by molecular imaging.