Download Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials Ebook PDF

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials
A Book

by Sekhar Chandra Ray

  • Publisher : Elsevier
  • Release : 2020-01-15
  • Pages : 240
  • ISBN : 0128176814
  • Language : En, Es, Fr & De
GET BOOK

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials offers coverage of electronic structure, magnetic properties and their spin injection, and the transport properties of DLC, graphene, graphene oxide, carbon nanotubes, fullerenes, and their different composite materials. This book is a valuable resource for those doing research or working with carbon and carbon-related nanostructured materials for electronic and magnetic devices. Carbon-based nanomaterials are promising for spintronic applications because their weak spin-orbit (SO) coupling and hyperfine interaction in carbon atoms entail exceptionally long spin diffusion lengths (~100μm) in carbon nanotubes and graphene. The exceptional electronic and transport features of carbon nanomaterials could be exploited to build multifunctional spintronic devices. However, a large spin diffusion length comes at the price of small SO coupling, which limits the possibility of manipulating electrons via an external applied field. Assesses the relative utility of a variety of carbon-based nanomaterials for spintronics applications Analyzes the specific properties that make carbon and carbon nanostructured materials optimal for spintronics and magnetic applications Discusses the major challenges to using carbon nanostructured materials as magnetic agents on a mass scale

Magnetism in Carbon Nanostructures

Magnetism in Carbon Nanostructures
A Book

by Frank Hagelberg

  • Publisher : Cambridge University Press
  • Release : 2017-07-13
  • Pages : 129
  • ISBN : 1108210317
  • Language : En, Es, Fr & De
GET BOOK

Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic phenomena of quantum physics, and are thus of great interest for fundamental research. This comprehensive survey emphasizes both the fundamental nature of the field, and its groundbreaking nanotechnological applications, providing a one-stop reference for both the principles and the practice of this emerging area. With equal relevance to physics, chemistry, engineering and materials science, senior undergraduate and graduate students in any of these subjects, as well as all those interested in novel nanomaterials, will gain an in-depth understanding of the field from this concise and self-contained volume.

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism
Volume Three: Nanoscale Spintronics and Applications

by Evgeny Y. Tsymbal,Igor Žutić

  • Publisher : CRC Press
  • Release : 2019-06-26
  • Pages : 646
  • ISBN : 0429805268
  • Language : En, Es, Fr & De
GET BOOK

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Handbook of Nanophysics

Handbook of Nanophysics
Principles and Methods

by Klaus D. Sattler

  • Publisher : CRC Press
  • Release : 2010-09-17
  • Pages : 827
  • ISBN : 9781420075410
  • Language : En, Es, Fr & De
GET BOOK

Covering the key theories, tools, and techniques of this dynamic field, Handbook of Nanophysics: Principles and Methods elucidates the general theoretical principles and measurements of nanoscale systems. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume explores the theories involved in nanoscience. It also discusses the properties of nanomaterials and nanosystems, including superconductivity, thermodynamics, nanomechanics, and nanomagnetism. In addition, leading experts describe basic processes and methods, such as atomic force microscopy, STM-based techniques, photopolymerization, photoisomerization, soft x-ray holography, and molecular imaging. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Spintronic 2D Materials

Spintronic 2D Materials
Fundamentals and Applications

by Wenqing Liu,Yongbing Xu

  • Publisher : Elsevier
  • Release : 2019-06-15
  • Pages : 400
  • ISBN : 0081021542
  • Language : En, Es, Fr & De
GET BOOK

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more

Carbon Nanomaterials for Biological and Medical Applications

Carbon Nanomaterials for Biological and Medical Applications
A Book

by Sekhar Chandra Ray,Nikhil Ranjan Jana

  • Publisher : Elsevier
  • Release : 2017-03-07
  • Pages : 250
  • ISBN : 0323479073
  • Language : En, Es, Fr & De
GET BOOK

Nanomaterials for Biological and Medical Applications explores the different applications of carbon nanomaterials in drug and gene therapies and their use in tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants, and as antitoxents. The book describes the synthesis processing of carbon nanomaterials, carbon composite nanomaterials, and their different biological and biomedical applications, including the removal of biologically toxic materials, optical biosensor applications, bio-imaging probe, drug delivery, cancer treatments, and other biomedical applications. Explains the major synthesis chemical process of carbon nanomaterials for biological applications Discusses how carbon nanomaterials can be practically used to create more efficient nanodevices in biosensing, medical imaging, and drug delivery Explores how the unique physical properties of carbon nanomaterials allows them to remove biologically toxic materials

Practical Aspects of Computational Chemistry III

Practical Aspects of Computational Chemistry III
A Book

by Jerzy Leszczynski,Manoj K. Shukla

  • Publisher : Springer Science & Business
  • Release : 2014-04-23
  • Pages : 436
  • ISBN : 1489974458
  • Language : En, Es, Fr & De
GET BOOK

Theoretical and Computational Chemistry research has made unparalleled advancements in understanding every expanding area of science and technology. This volume presents the state-of-the-art research and progress made by eminent researchers in the area of theoretical computational chemistry and physics. The title mirrors the name of the annual international conference “Conference on Current Trends on Computational Chemistry” (CCTCC) which has become a popular discussion ground for eminent Theoretical and Computational Chemists and has been honored by the presence of several Nobel Laureates. Practical Aspects of Computational Chemistry III is aimed at theoretical and computational chemists, physical chemists, material scientists and those who are eager to apply computational chemistry methods to problems of chemical and physical importance. The book is a valuable resource for undergraduate, graduate and PhD students as well as established researchers.

Carbon Nanomaterial Electronics: Devices and Applications

Carbon Nanomaterial Electronics: Devices and Applications
A Book

by Arnab Hazra

  • Publisher : Springer Nature
  • Release : 2021
  • Pages : 446
  • ISBN : 9811610525
  • Language : En, Es, Fr & De
GET BOOK

This book brings together selective and specific chapters on nanoscale carbon and applications, thus making it unique due to its thematic content. It provides access to the contemporary developments in carbon nanomaterial research in electronic applications. Written by professionals with thorough expertise in similar broad area, the book is intended to address multiple aspects of carbon research in a single compiled edition. It targets professors, scientists and researchers belonging to the areas of physics, chemistry, engineering, biology and medicine, and working on theory, experiment and applications of carbon nanomaterials.

Graphene and Related Nanomaterials

Graphene and Related Nanomaterials
Properties and Applications

by Paolo Bondavalli

  • Publisher : Elsevier
  • Release : 2017-10-26
  • Pages : 192
  • ISBN : 0323481027
  • Language : En, Es, Fr & De
GET BOOK

Graphene and Related Nanomaterials: Properties and Applications outlines the physics and the applications of graphene-related materials, including graphene, graphene oxide and carbon nanotubes. The first chapter introduces the physics of graphene and related nanomaterials. The following sections deal with different applications spanning from gas sensors to non-volatile memories and supercapacitors. The book also covers spintronics for graphene. In each chapter, specific applications are explained in a detailed way. This book will appeal to materials scientists and engineers looking to understand more about the nature of graphene and how it is currently being used. Explains how particular physical properties of graphene make it suitable for specific applications Explores current applications in sensing and energy Assesses the challenges of using carbon nanomaterials in engineering and evaluates future opportunities Appeals to materials scientists and engineers looking to understand more about the nature of graphene and how it is currently being used

Magnetic Nano- and Microwires

Magnetic Nano- and Microwires
Design, Synthesis, Properties and Applications

by Manuel Vázquez

  • Publisher : Woodhead Publishing
  • Release : 2020-04-01
  • Pages : 997
  • ISBN : 0081028334
  • Language : En, Es, Fr & De
GET BOOK

Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Second Edition, reviews the growth and processing of nanowires and nanowire heterostructures using such methods as sol-gel and electrodeposition, focused-electron/ion-beam-induced deposition, epitaxial growth by chemical vapor transport, and more. Other sections cover engineering nanoporous anodic alumina, discuss magnetic and transport properties, domains, domain walls in nano-and microwires. and provide updates on skyrmions, domain walls, magnetism and transport, and the latest techniques to characterize and analyze these effects. Final sections cover applications, both current and emerging, and new chapters on memory, sensor, thermoelectric and nanorobotics applications. This book will be an ideal resource for academics and industry professionals working in the disciplines of materials science, physics, chemistry, electrical and electronic engineering and nanoscience. Details the multiple key techniques for the growth, processing and characterization of nanowires and microwires Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications, also including biomedical and sensing applications Discusses magnetism and transport in nanowires, skyrmions and domain walls in nanowires and the latest innovations in magnetic imaging

Nanoscale Spintronics and Applications

Nanoscale Spintronics and Applications
A Book

by Evgeny Y. Tsymbal,Igor Zutic

  • Publisher : CRC Press
  • Release : 2019-06-27
  • Pages : 628
  • ISBN : 9781498769709
  • Language : En, Es, Fr & De
GET BOOK

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL's Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Zutic received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Electron Paramagnetic Resonance in Modern Carbon-Based Nanomaterials

Electron Paramagnetic Resonance in Modern Carbon-Based Nanomaterials
A Book

by Dariya Savchenko,Abdel Hadi Kassiba

  • Publisher : Bentham Science Publishers
  • Release : 2018-06-05
  • Pages : 304
  • ISBN : 168108693X
  • Language : En, Es, Fr & De
GET BOOK

This volume presents information about several topics in the field of electron paramagnetic resonance (EPR) study of carbon-containing nanomaterials. It introduces the reader to an array of experimental and theoretical approaches for the analysis of paramagnetic centers (dangling bonds, interface defects, vacancies, and impurities) usually observed in modern carbon-containing materials such as nanographites, graphene, disordered onion-like carbon nanospheres (DOLCNS), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNT), graphene oxide (GO), reduced graphene oxide (rGO), nanodiamonds, silicon carbonitride (SiCN) and silicon carbide (SiC) based composites and thin films. In particular, the book describes in detail: • The fundamentals of EPR spectroscopy and its application to the carbon-containing materials; • The resolution of the EPR signals from different species in carbon materials; • EPR characterization of spin dynamics in carbon nanomaterials; • Magnetic properties of DWCNTs and MWCNTs polymer composites; • EPR investigations on GO, rGO and CNTs with different chemical functionalities; • EPR spectroscopy of semiconducting SWCNTs thin films and their transistors; • In-situ EPR investigations of the oxygenation processes in coal and graphene materials; • The two-temperature EPR measurement method applied to carbonaceous solids; • Characterization of impurities in nanodiamonds and SiC nanomaterials and related size effects by CW and pulse EPR techniques; • Application of multifrequency EPR to the study of paramagnetic defects in a-Si1-xCx:H thin films and a-SiCxNy based composites. This volume is a useful guide for researchers interested in the EPR study of paramagnetic centers in the carbon-containing thin films, nanomaterials, ceramics, etc. It is also a valuable teaching tool at graduate and postgraduate levels for advanced courses in analytical chemistry, applied sciences and spectroscopy.

Physical Properties of Nanosystems

Physical Properties of Nanosystems
A Book

by Janez Bonca,Sergei Kruchinin

  • Publisher : Springer
  • Release : 2010-12-13
  • Pages : 340
  • ISBN : 940070044X
  • Language : En, Es, Fr & De
GET BOOK

Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena are found when systems are reduced to sizes comparable to the fundamental microscopic length scales of the material investigated. There has been great interest in this research due, in particular, to its role in the development of spintronics, molecular electronics and quantum information processing. The contributions to this volume describe new advances in many of these fundamental and fascinating areas of nanophysics, including carbon nanotubes, graphene, magnetic nanostructures, transport through coupled quantum dots, spintronics, molecular electronics, and quantum information processing.

Advances in Carbon Nanostructures

Advances in Carbon Nanostructures
A Book

by Adrián Silva,Sónia Carabineiro

  • Publisher : BoD – Books on Demand
  • Release : 2016-10-05
  • Pages : 256
  • ISBN : 9535126423
  • Language : En, Es, Fr & De
GET BOOK

Carbon atoms have the amazing ability to bond in remarkable different manners that can assume distinct astonishing dimensional arrangements from which absolutely diverse and interesting nanostructured carbon materials are obtained. This book aims to cover the most recent advances in (i) Graphene and derivatives, including graphene-based magnetic composites, membranes, wafer devices, and nanofibers for several applications, as well as some particular properties, such as light emission from graphene; (ii) Carbon nanotubes heaters and fibers for reinforcement of cement and diamond-based thin films; and (iii) Nanofluids consisting of both graphene and carbon nanotubes, apart from reporting some important case studies dealing with carbon nanostructures and their use in sensors, coatings, or electromagnetic wave absorbers.

The Physics and Chemistry of Nanosolids

The Physics and Chemistry of Nanosolids
A Book

by Frank J. Owens,Charles P. Poole, Jr.

  • Publisher : John Wiley & Sons
  • Release : 2008-04-11
  • Pages : 540
  • ISBN : 0470067403
  • Language : En, Es, Fr & De
GET BOOK

A comprehensive textbook that addresses the recent interest in nanotechnology in the engineering, materials science, chemistry, and physics communities In recent years, nanotechnology has become one of the most promising and exciting fields of science, triggering an increasing number of university engineering, materials science, chemistry, and physics departments to introduce courses on this emerging topic. Now, Drs. Owens and Poole have revised, updated, and revamped their 2003 work, Introduction to Nanotechnology, to make it more accessible as a textbook for advanced undergraduate- and graduate-level courses on the fascinating field of nanotechnology and nanoscience. The Physics and Chemistry of Nanosolids takes a pedagogical approach to the subject and assumes only an introductory understanding of the physics and chemistry of macroscopic solids and models developed to explain properties, such as the theory of phonon and lattice vibrations and electronic band structure. The authors describe how properties depend on size in the nanometer regime and explain why these changes occur using relatively simple models of the physics and chemistry of the solid state. Additionally, this accessible book: Provides an introductory overview of the basic principles of solids Describes the various methods used to measure the properties of nanosolids Explains how and why properties change when reducing the size of solids to nano-dimensions, and what they predict when one or more dimensions of a solid has a nano-length Presents data on how various properties of solids are affected by nanosizing and examines why these changes occur Contains a chapter entirely devoted to the importance of carbon nanostructured materials and the potential applications of carbon nanostructures The Physics and Chemistry of Nanosolids is complete with a series of exercises at the end of each chapter for readers to enhance their understanding of the material presented, making this an ideal textbook for students and a valuable tutorial for technical professionals and researchers who are interested in learning more about this important topic.

Graphene to Polymer/Graphene Nanocomposites

Graphene to Polymer/Graphene Nanocomposites
Emerging Research and Opportunities

by Ayesha Kausar

  • Publisher : Elsevier
  • Release : 2021-10-01
  • Pages : 286
  • ISBN : 0323909388
  • Language : En, Es, Fr & De
GET BOOK

Graphene to Polymer/Graphene Nanocomposites: Emerging Research and Opportunities brings together the latest advances and cutting-edge methods in polymer/graphene nanocomposites that offer attractive properties and features, leading to a broad range of valuable applications. The initial chapters of this book explain preparation, properties, modification, and applications of graphene and graphene-based multifunctional polymeric nanocomposites. Later, the state-of-the-art potential of polymer/graphene nanocomposites for hierarchical nanofoams, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, etc., has been elucidated. The subsequent chapters focus on specific innovations and applications including stimuli-responsive graphene-based materials, anticorrosive coatings, applications in electronics and energy devices, gas separation and filtration membrane applications, aerospace applications, and biomedical applications. Throughout the book, challenges, and future opportunities in the field of polymer/graphene nanocomposites are discussed and analyzed. This is an important resource for researchers, scientists, and students/academics working with graphene and across the fields of polymer composites, nanomaterials, polymer science, chemistry, chemical engineering, biomedical engineering, materials science, and engineering, as well those in an industrial setting who are interested in graphene or innovative materials. Explores the fundamentals, preparation, properties, processing, and applications of graphene and multifunctional polymer-graphene nanocomposites. Focuses on the state of the art including topics such as nano-foam architectures, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, and other graphene nanostructures. Provides advanced applications including shape memory materials, anticorrosion materials, electronics and energy devices, gas separation and filtration membranes, aerospace relevance, and biomedical applications.

Material Science

Material Science
A Book

by S.L. Kakani

  • Publisher : New Age International
  • Release : 2006-01-01
  • Pages : 656
  • ISBN : 8122415288
  • Language : En, Es, Fr & De
GET BOOK

The Book Has Been Designed To Cover All Relevant Topics In B.E. (Mechanical/Metallurgy / Material Science / Production Engineering), M.Sc. (Material Science), B.Sc. (Honours), M.Sc. (Physics), M.Sc. (Chemistry), Amie And Diploma Students. Students Appearing For Gate, Upsc, Net, Slet And Other Entrance Examinations Will Also Find Book Quite Useful.In Nineteen Chapters, The Book Deals With Atomic Structure, The Structure Of Solids; Crystal Defects; Chemical Bonding; Diffusion In Solids; Mechanical Properties And Tests Of Materials; Alloys, Phase Diagrams And Phase Transformations; Heat Treatment; Deformation Of Materials; Oxidation And Corrosion; Electric, Magnetic, Thermal And Optical Properties; Semiconductors; Superconductivity; Organic Materials; Composites; And Nanostructured Materials.Special Features: * Fundamental Principles And Applications Are Discussed With Explanatory Diagrams In A Clear Way. * A Full Coverage Of Background Topics With Latest Development Is Provided. * Special Chapters On Nanostructured Materials, Superconductivity, Semiconductors, Polymers, Composites, Organic Materials Are Given . * Solved Problems, Review Questions, Problems, Short-Question Answers And Typical Objective Type Questions Alongwith Suggested Readings Are Given With Each Chapter.

Molecular Nanomagnets and Related Phenomena

Molecular Nanomagnets and Related Phenomena
A Book

by Song Gao

  • Publisher : Springer
  • Release : 2015-02-20
  • Pages : 463
  • ISBN : 3662457237
  • Language : En, Es, Fr & De
GET BOOK

The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer for all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.

Magnetic Nanomaterials

Magnetic Nanomaterials
Fundamentals, Synthesis and Applications

by Yanglong Hou,David J. Sellmyer

  • Publisher : John Wiley & Sons
  • Release : 2017-10-23
  • Pages : 600
  • ISBN : 352734134X
  • Language : En, Es, Fr & De
GET BOOK

Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave-absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.

Spintronics Handbook, Second Edition

Spintronics Handbook, Second Edition
Semiconductor Spintronics - Volume Two

by Evgeny Y. Tsymbal

  • Publisher : CRC Press
  • Release : 2019-05-06
  • Pages : 590
  • ISBN : 9781498769600
  • Language : En, Es, Fr & De
GET BOOK

The second edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.