Download Multiphysics in Nuclear Science and Engineering Ebook PDF

Modelling of Nuclear Reactor Multi-physics

Modelling of Nuclear Reactor Multi-physics
From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics

by Christophe Demazière

  • Publisher : Academic Press
  • Release : 2019-11-19
  • Pages : 368
  • ISBN : 012815070X
  • Language : En, Es, Fr & De
GET BOOK

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations. The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer). The first chapter introduces the book’s subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference Analyses the emerging area of multi-physics and multi-scale reactor modelling Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding

Nuclear Reactor Multiphysics Via Bond Graph Formalism

Nuclear Reactor Multiphysics Via Bond Graph Formalism
A Book

by Eugeny Sosnovsky,Massachusetts Institute of Technology. Department of Nuclear Science and Engineering

  • Publisher : Unknown Publisher
  • Release : 2014
  • Pages : 216
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the individual physics separately and exchanges the information at every time step. This approach has limited accuracy, and so recently, there has been an increased interest in fully coupled physics simulation. The bond graph formalism has recently been suggested as a potential paradigm for reactor multiphysics simulation; this work develops the tools necessary to utilize bond graphs for practical transient reactor analysis. The bond graph formalism was first introduced to solve the multiphysics problem in electromechanical systems. Over the years, it has been used in many fields including nuclear engineering, but with limited scope due to its perceived impracticality in large systems. Bond graph formalism works by first representing a discretized multiphysics system using a group of graph elements, connected with bonds; the bonds transport conserved quantities, and the elements impose the relations between them. The representation can be automatically converted into a state derivative vector, which can be integrated in time. In an earlier work, the bond graph formalism was first applied to neutron diffusion, and coupled to diffusive heat transfer in a 1D slab reactor. In this work, methods are developed to represent, using bond graphs, 2D and 3D multigroup neutron diffusion with precursors, nonlinear point kinetics, and basic nearly-incompressible 1D flow for fully coupled reactor simulation. High-performance, matrix-based bond graph processing methods were developed to support the simulation of medium- and large-scale problems. A pressurized water reactor point kinetics, single-channel rod ejection benchmark problem was used to verify the nonlinear point kinetics representation. 2D and 3D boiling water reactor control blade drop problems were also successfully simulated with the matrix-based bond graph processing code. The code demonstrated 3rd-order convergence in time, a very desirable property of fully coupled time integrators.

BERRU Predictive Modeling

BERRU Predictive Modeling
Best Estimate Results with Reduced Uncertainties

by Dan Gabriel Cacuci

  • Publisher : Springer
  • Release : 2018-12-29
  • Pages : 451
  • ISBN : 366258395X
  • Language : En, Es, Fr & De
GET BOOK

This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author’s view, the objective of predictive modeling is to extract “best estimate” values for model parameters and predicted results, together with “best estimate” uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information. The customary methods used for data assimilation combine experimental and computational information by minimizing an a priori, user-chosen, “cost functional” (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Modeling methodology developed by the author relies on the thermodynamics-based maximum entropy principle to eliminate the need for relying on minimizing user-chosen functionals, thus generalizing the “data adjustment” and/or the “4D-VAR” data assimilation procedures used in the geophysical sciences. The BERRU predictive modeling methodology also provides a “model validation metric” which quantifies the consistency (agreement/disagreement) between measurements and computations. This “model validation metric” (or “consistency indicator”) is constructed from parameter covariance matrices, response covariance matrices (measured and computed), and response sensitivities to model parameters. Traditional methods for computing response sensitivities are hampered by the “curse of dimensionality,” which makes them impractical for applications to large-scale systems that involve many imprecisely known parameters. Reducing the computational effort required for precisely calculating the response sensitivities is paramount, and the comprehensive adjoint sensitivity analysis methodology developed by the author shows great promise in this regard, as shown in this book. After discarding inconsistent data (if any) using the consistency indicator, the BERRU predictive modeling methodology provides best-estimate values for predicted parameters and responses along with best-estimate reduced uncertainties (i.e., smaller predicted standard deviations) for the predicted quantities. Applying the BERRU methodology yields optimal, experimentally validated, “best estimate” predictive modeling tools for designing new technologies and facilities, while also improving on existing ones.

Investigation of Bond Graphs for Nuclear Reactor Simulations

Investigation of Bond Graphs for Nuclear Reactor Simulations
A Book

by Eugeny Sosnovsky

  • Publisher : Unknown Publisher
  • Release : 2010
  • Pages : 108
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

This work proposes a simple and effective approach to modeling multiphysics nuclear reactor problems using bond graphs. The conventional method of modeling the coupled multiphysics transients in nuclear reactors is operator splitting, which treats the single physics individually and exchanges the information at every time step. This approach has limited accuracy, and so there is interest in the development of methods for fully coupled physics simulation. The bond graph formalism was first introduced to solve the multiphysics problem in electromechanical systems. Over the years, it has been used in many fields including nuclear engineering, but with limited scope due to its perceived impracticality in large systems. In this work, the bond graph formalism is for the first time applied to neutron transport, and coupled to heat transfer in a nuclear reactor. Fully coupled 1D diffusion reaction model is derived using bond graphs, and the transient solution obtained using a proof-of-concept bond graph processing code. The bond graph-based approach to coupled nuclear reactor simulation was shown to be accurate and stable. Suggestions are made for the expansion of the approach to larger problems and higher fidelity simulations.

Methods for Including Multiphysics Feedback in Monte Carlo Reactor Physics Calculations

Methods for Including Multiphysics Feedback in Monte Carlo Reactor Physics Calculations
A Book

by Matthew Shawn Ellis

  • Publisher : Unknown Publisher
  • Release : 2017
  • Pages : 321
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

The ability to model and simulate nuclear reactors during steady state and transient conditions is important for designing efficient and safe nuclear power systems. The accurate simulation of a nuclear reactor is particularly challenging because the multiple physical processes within the reactor are tightly coupled, which requires that the numerical methods used to resolve each physical process can accurately and efficiently transfer and utilize data from other applications. Monte Carlo methods are desirable for solving the neutron transport equation required in reactor analysis because of the inherent accuracy of the method, but the Computational Solid Geometry (CSG) representation of the physical geometry makes it difficult to accurately and efficiently perform multiphysics reactor analyses with other applications that utilize finite element or finite volume representations. To address this limitation, a multiphysics coupling framework that minimizes the need for spatial discretization in the Monte Carlo geometry is presented in this thesis. The coupling framework uses Functional Expansion Tallies to transfer multiphysics information from the Monte Carlo application to other multiphysics tools. Additionally, the coupling framework uses a modified method for transporting neutrons through spatially continuous total macroscopic cross section distributions in order to incorporate continuous multiphysics feedback fields such as fuel temperature and coolant density into the Monte Carlo simulation. It has been shown that separable Zernike and Legendre Function Expansion Tallies can effectively reconstruct a continuous distribution of fission power density. Additionally, using a prototypical three-dimensional Light Water Reactor pin cell, the method used to transport neutrons through a continuously varying fuel temperature and coolant density distribution was shown to be 1.7 times faster than a comparable discretized simulation with volume-averaged properties, while still providing a high level of accuracy. Finally, in order to make the overall multiphysics coupling scheme useful for reactor analyses, a novel spatially continuous depletion methodology was developed and investigated. With the spatially continuous depletion methodology, number densities can be represented as a linear combination of polynomials, and those polynomial representations can be integrated through time to predict reactor operation. The spatially continuous depletion methodology was able to accurately predict the eigenvalue and number density distributions in a two-dimensional LWR pin cell depletion containing Gd-157 from a 2 weight percent GdO2 and seven other nuclides in the depletion matrix. Analyses of the spatially continuous depletion methodology showed that significant reductions in the number of tallied values could be achieved if polynomial representations were optimized for each nuclide reaction rate. From the depletion simulations in this thesis, a 23% reduction in the required number of reaction rate tallies compared to a lower-fidelity, 10 radial ring pin discretization was shown to be achievable with nuclide polynomial optimization. In addition to showing potential for reductions in tally memory and computational requirements, the spatially continuous depletion simulation was shown to be equal in computational performance to a discrete simulation with 10 radial rings and 8 azimuthal cuts, while providing a much higher level of spatial fidelity in number density concentrations.

Fusion Neutronics

Fusion Neutronics
A Book

by Yican Wu

  • Publisher : Springer
  • Release : 2017-08-16
  • Pages : 393
  • ISBN : 981105469X
  • Language : En, Es, Fr & De
GET BOOK

This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author’s more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.

Issues in Water and Power Engineering: 2013 Edition

Issues in Water and Power Engineering: 2013 Edition
A Book

by Anonim

  • Publisher : ScholarlyEditions
  • Release : 2013-05-01
  • Pages : 765
  • ISBN : 1490108327
  • Language : En, Es, Fr & De
GET BOOK

Issues in Water and Power Engineering / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Fusion Engineering. The editors have built Issues in Water and Power Engineering: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Fusion Engineering in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Water and Power Engineering: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Particle Methods for Multi-Scale and Multi-Physics

Particle Methods for Multi-Scale and Multi-Physics
A Book

by M B Liu,G R Liu

  • Publisher : World Scientific
  • Release : 2015-12-28
  • Pages : 400
  • ISBN : 9814571717
  • Language : En, Es, Fr & De
GET BOOK

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences. Contents:IntroductionMolecular DynamicsDissipative Particle Dynamics — MethodologyDissipative Particle Dynamics — ApplicationsSmoothed Particle Hydrodynamics — MethodologySmoothed Particle Hydrodynamics — ApplicationsThree Typical Particle Methods Readership: Undergraduates, graduates, researchers, and professionals studying/dealing with fluid mechanics, numerical analysis and computational mathematics, engineering mechanics, ocean engineering, mechanical engineering. Key Features:The authors have many years of experience in meshfree and particle methods, and are renowned scientists in related areas, with highly cited publications. This can greatly attracts fellow researchers from all around the world to probe the latest development on current major particle methodsThe authors have authored numerous technical publications, and many popular books. They truly understand what the fellow researchers think and wantThe authors have extensive network in academics and research. It is comparatively easy to introduce the book to professional organizations, international conferences, and different academic bodies such as universities and research institutesKeywords:Computer Modeling;Numerical Methods;Meshfree Particle Methods;Smoothed Particle Hydrodynamics;Dissipative Particle Dynamics;Molecular Dynamics

Memory Efficient Indexing Algorithm for Physical Properties in OpenMC

Memory Efficient Indexing Algorithm for Physical Properties in OpenMC
A Book

by Derek Michael Lax

  • Publisher : Unknown Publisher
  • Release : 2015
  • Pages : 56
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

OpenMC is an open source Monte Carlo code designed at MIT with a focus on parallel scalability for large nuclear reactor simulations. The target problem for OpenMC is a full core high-fidelity multi-physics coupled simulation. This encompasses not only nuclear physics, but also material science and thermohydraulics. One of the challenges associated with this problem is efficient data management, as the memory required for tallies alone can easily enter the Terabyte range. This thesis presents an efficient system for data storage which allows for physical properties of materials to be indexed without any constraints on the geometry. To demonstrate its functionality, a sample depletion calculation with 4 isotopes is completed on the BEAVRS benchmark geometry. Additionally, a temperature distribution assembly layout is presented.

Multi-physics Approach to the Modelling and Analysis of Molten Salt Reactors

Multi-physics Approach to the Modelling and Analysis of Molten Salt Reactors
A Book

by Lelio Luzzi,Valentino Di Marcello,Antonio Cammi

  • Publisher : Nova Novinka
  • Release : 2012
  • Pages : 140
  • ISBN : 9781614700005
  • Language : En, Es, Fr & De
GET BOOK

Multi-Physics Modelling (MPM) is an innovative simulation technique that looks very promising for the employment in the field of nuclear engineering as an integrative analysis support in the design development of current and innovative nuclear reactors. This book presents a Multi-Physics Modelling (MPM) approach to the analysis of nuclear reactor core behaviour, developed to study the coupling between neutronics and thermo-hydrodynamics. Reference is made to the Molten Salt Reactor, one of the innovative nuclear systems under development in the framework of the Generation IV International Forum, but the same methodology can be applied to other reactor systems.

Automating Radiation Damage Studies of Materials Irradiated by High-energy Protons Using Multiphysics Simulations

Automating Radiation Damage Studies of Materials Irradiated by High-energy Protons Using Multiphysics Simulations
A Book

by Gabrielle J. Ledoux

  • Publisher : Unknown Publisher
  • Release : 2016
  • Pages : 81
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Understanding radiation and corrosion damage in nuclear materials has become increasingly important in reactor design considerations. However, running irradiation damage studies in nuclear reactors is expensive and time-consuming. Thus, accurate, quick simulations have become more attractive to researchers studying alternative materials in nuclear reactors. This thesis investigates the possibility of automating irradiation damage studies using ion stopping range simulations coupled with heat generation simulations to find the change in temperature across a sample. The range simulations generate 1D slabs with different thicknesses and bombards them with high-energy proton beams. The slabs are automatically sorted, a meshed geometry is created, and the recoil energy information is entered into a multiphysics Finite- Element solver. Ultimately, the optimal beam current for which the temperature gradient across a coolant-sample geometry is less than 5 K is predicted. This thesis examines the possibility of automating the entire simulation process so that many materials and slab thicknesses can be tested for resistance to temperature change (and thus implying specifics of radiation damage effects).

Multiphysics Modelling of Fluid-Particulate Systems

Multiphysics Modelling of Fluid-Particulate Systems
A Book

by Hassan Khawaja,Mojtaba Moatamedi

  • Publisher : Academic Press
  • Release : 2020-03-14
  • Pages : 438
  • ISBN : 0128183462
  • Language : En, Es, Fr & De
GET BOOK

Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid‐particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem. This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing. Provides detailed coverage of Resolved and Unresolved Computational Fluid Dynamics - Discrete Element Method (CFD-DEM), Smoothed Particle Hydrodynamics, and their various attributes Gives an excellent summary of a range of simulation techniques and provides numerical examples Starts with a broad introduction to fluid-particulate systems to help readers from a range of disciplines grasp fundamental principles

Computational Techniques for Multiphase Flows

Computational Techniques for Multiphase Flows
A Book

by Guan Heng Yeoh,Jiyuan Tu

  • Publisher : Butterworth-Heinemann
  • Release : 2019-02-27
  • Pages : 640
  • ISBN : 0081024541
  • Language : En, Es, Fr & De
GET BOOK

Computational Techniques for Multiphase Flows, Second Edition, provides the latest research and theories covering the most popular multiphase flows The book begins with an overview of the state-of-the-art techniques for multiple numerical methods in handling multiphase flow, compares them, and finally highlights their strengths and weaknesses. In addition, it covers more straightforward, conventional theories and governing equations in early chapters, moving on to the more modern and complex computational models and tools later in the book. It is therefore accessible to those who may be new to the subject while also featuring topics of interest to the more experienced researcher. Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for understanding fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, automotive, energy, aerospace and pharmaceutical industries. This revised edition is an ideal reference for scientists, MSc students and chemical and mechanical engineers in these areas. Includes updated chapters in addition to a brand-new section on granular flows. Features novel solution methods for multiphase flow, along with recent case studies. Explains how and when to use the featured technique and how to interpret the results and apply them to improving applications.

Multiphysics Simulations in Automotive and Aerospace Applications

Multiphysics Simulations in Automotive and Aerospace Applications
A Book

by Mojtaba Moatamedi,Thurai Rahulan,Hassan Khawaja

  • Publisher : Academic Press
  • Release : 2021-07-30
  • Pages : 307
  • ISBN : 0128179007
  • Language : En, Es, Fr & De
GET BOOK

Multiphysics Simulations in Automotive and Aerospace Applications provides the fundamentals and latest developments on numerical methods for solving multiphysics problems, including fluid-solid interaction, fluid-structure‐thermal coupling, electromagnetic-fluid-solid coupling, vibro and aeroacoustics. Chapters describe the different algorithms and numerical methods used for solving coupled problems using implicit or explicit coupling problems from industrial or academic applications. Given the book’s comprehensive coverage, automotive and aerospace engineers, designers, graduate students and researchers involved in the simulation of practical coupling problems will find the book useful in its approach. Provides the fundamentals of numerical methods, along with comprehensive examples for solving coupled problems Features multi-physics methods and available codes, along with what those codes can do Presents examples from industrial and academic applications

Tally Derivative Based Surrogate Models for Faster Monte Carlo Multiphysics

Tally Derivative Based Surrogate Models for Faster Monte Carlo Multiphysics
A Book

by Sterling M. Harper

  • Publisher : Unknown Publisher
  • Release : 2020
  • Pages : 231
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Existing neutron transport methods used in the nuclear power industry rely on a complex toolchain of modeling and simulation software. Each link in this chain applies various approximations to the spatial, angular, and energy distributions of the problem variables; and these approximations can limit solver predictive capabilities. Monte Carlo (MC) neutron transport is a high-fidelity method that can relax many of these approximations and possibly replace much of the existing toolchain. However, MC neutron transport is also very slow, particularly when coupled into a multiphysics solver. Some researchers have published runtime costs of over 100 000 cpuhours to converge a quarter-core multiphysics problem with MC -- an expense which makes MC-based tools prohibitive for regular use. In response to this issue, some researchers have developed acceleration techniques using the diffusion-based CMFD (coarse mesh finite difference) method. This thesis extends that work by coupling the CMFD solver directly to the thermalhydraulics solvers in a multiphysics simulation. To enable this coupling, MC differential tallies are used to compute the feedback dependence of CMFD parameters. Novel methods based on the windowed multipole cross section representation are used to compute fuel temperature derivatives along with coolant density derivatives. This differential tally approach proves to be flexible; the same procedure is applied to each coarse mesh cell regardless of the presence of control rods, burnable poisons, spacer grids, 135Xe, or other details of the MC model. With the inclusion of a simple pin power reconstruction scheme, these methods create a surrogate neutronics solver capable of bi-directional coupling with thermal-hydraulics. This surrogate can then accelerate multiphysics convergence by reducing the reliance on costly MC simulations. Furthermore, a novel source-weight clipping procedure is introduced to damp MCCMFD instabilities. Because this clipping procedure does not require multiple MC generations, CMFD and multiphysics coupling can be performed after each MC generation -- even the first generation. This allows simulations to be run with very few MC generations, a feature which alleviates the cost of using many neutrons per MC generation to reduce the impact of fission source distribution undersampling. This methodology is tested on a quarter-core model of the BEAVRS benchmark, a large pressurized water reactor. Simplified subchannel fluid dynamics, fuel pin heat transfer, and equilibrium xenon solvers are included to form a multiphysics system. Without the presented acceleration methods, these quarter-core multiphysics simulations using 200 million neutrons per generation are projected to require 3 300 cpu core-hours to reach stationarity. With the presented methods, this cost falls to 270 core-hours. Further results are shown to demonstrate the runtime costs needed to tightly resolve fine-mesh power distributions with projected runtime savings of 6× over prior work.

Nuclear Power Plant Design and Analysis Codes

Nuclear Power Plant Design and Analysis Codes
Development, Validation, and Application

by Jun Wang,Xin Li,Chris Allison,Judy Hohorst

  • Publisher : Woodhead Publishing
  • Release : 2020-11-10
  • Pages : 608
  • ISBN : 0128181915
  • Language : En, Es, Fr & De
GET BOOK

Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application presents the latest research on the most widely used nuclear codes and the wealth of successful accomplishments which have been achieved over the past decades by experts in the field. Editors Wang, Li,Allison, and Hohorst and their team of authors provide readers with a comprehensive understanding of nuclear code development and how to apply it to their work and research to make their energy production more flexible, economical, reliable and safe. Written in an accessible and practical way, each chapter considers strengths and limitations, data availability needs, verification and validation methodologies and quality assurance guidelines to develop thorough and robust models and simulation tools both inside and outside a nuclear setting. This book benefits those working in nuclear reactor physics and thermal-hydraulics, as well as those involved in nuclear reactor licensing. It also provides early career researchers with a solid understanding of fundamental knowledge of mainstream nuclear modelling codes, as well as the more experienced engineers seeking advanced information on the best solutions to suit their needs. Captures important research conducted over last few decades by experts and allows new researchers and professionals to learn from the work of their predecessors Presents the most recent updates and developments, including the capabilities, limitations, and future development needs of all codes Incudes applications for each code to ensure readers have complete knowledge to apply to their own setting.

Safety and Reliability: Methodology and Applications

Safety and Reliability: Methodology and Applications
A Book

by Tomasz Nowakowski,Marek Mlynczak,Anna Jodejko-Pietruczuk,Sylwia Werbinska-Wojciechowska

  • Publisher : CRC Press
  • Release : 2014-09-01
  • Pages : 408
  • ISBN : 1315736977
  • Language : En, Es, Fr & De
GET BOOK

Within the last fifty years the performance requirements for technical objects and systems were supplemented with: customer expectations (quality), abilities to prevent the loss of the object properties in operation time (reliability and maintainability), protection against the effects of undesirable events (safety and security) and the ability to

Project on Nuclear Issues

Project on Nuclear Issues
A Collection of Papers from the 2017 Conference Series and Nuclear Scholars Initiative

by Mark Cancian

  • Publisher : Rowman & Littlefield
  • Release : 2018-03-09
  • Pages : 202
  • ISBN : 1442280565
  • Language : En, Es, Fr & De
GET BOOK

The papers in this volume comprise research from participants in the 2017 Nuclear Scholars Initiative and PONI Conference Series. PONI sponsors this research to provide a forum for facilitating new and innovative thinking and a platform for emerging thought leaders across the nuclear enterprise.

Multiphysics Modeling of Activity Transport and Evolution of CRUD and Steam Generator Oxides in Pressurized Water Reactors

Multiphysics Modeling of Activity Transport and Evolution of CRUD and Steam Generator Oxides in Pressurized Water Reactors
A Book

by Alicia M. Elliott

  • Publisher : Unknown Publisher
  • Release : 2018
  • Pages : 169
  • ISBN : 9876543210XXX
  • Language : En, Es, Fr & De
GET BOOK

Fouling deposits of corrosion products on fuel cladding, known as crud, in the core of light water reactors can cause a variety of operational issues. Buildup of radioactive crud and corrosion products on ex-core structures, such as steam generators and piping, can cause increased radiation fields and higher dose exposures for plant workers. To better understand the mechanisms of corrosion product activity transport and evolution in the primary coolant loop, a crud source term and activity transport code that can predict the concentration of active isotopes in a primary loop over time and plant operating parameters was developed, implementing mechanistic models for soluble corrosion product dissolution and precipitation. The code described in this thesis tracks activated isotope deposition throughout the primary loop with spatial and temporal resolution, without the use of empirical rate constants derived from plant measurements, to predict primary loop activity buildup. Developed in C++ using the MOOSE Framework, this code can be easily coupled to other multiphysics codes through the MOOSE MultiApp system. A set of input file generation scripts, written in Python, were developed to calculate thermodynamic parameters for chemical reactions added to the simulation, and easily set up simulation input files in a "user-friendly" format. The open source code described in this work, Ouroboros, is available freely for future improvements and adaptations to implement additional mechanisms and more rigorous models. This code is the first step towards a long term effort to develop an open source, fully mechanistic crud source term model including all mechanisms for activity transport in pressurized water reactors.

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors
A Book

by Maria Avramova,Kostadin Ivanov

  • Publisher : Woodhead Publishing Series in
  • Release : 2018-09-15
  • Pages : 300
  • ISBN : 9780128149546
  • Language : En, Es, Fr & De
GET BOOK

Verification, Validation and Uncertainty Quantification in Multi-Physics Modeling of Nuclear Reactors is a key reference for those tasked with ensuring the credibility and reliability of engineering models and simulations for the nuclear industry and nuclear energy research. Sections discuss simulation challenges and revise key definitions, concepts and terminology. Chapters cover solution verification, the frontier discipline of multi-physics coupling verification, model validation and its applications to single and multi-scale models, and uncertainty quantification. This essential guide will greatly assist engineers, scientists, regulators and students in applying rigorous verification, validation and uncertainty quantification methodologies to the M&S tools used in the industry. The book contains a strong focus on the verification and validation procedures required for the emerging multi-physics M&S tools that have great potential for use in the licensing of new reactors, as well as for power uprating and life extensions of operating reactors. Uniquely--and crucially for nuclear engineers--demonstrates the application of verification, validation and uncertainty methodologies to the modeling and simulation (M&S) of nuclear reactors Equips the reader to develop a rigorously defensible validation process irrespective of the particular M&S tool used Brings the audience up-to-speed on validation methods for traditional M&S tools Extends the discussion to the emerging area of validation of multi-physics and multi-scale nuclear reactor simulations