Download Organic Structure Determination Using 2-D NMR Spectroscopy Ebook PDF

Organic Structure Determination Using 2-D NMR Spectroscopy

Organic Structure Determination Using 2-D NMR Spectroscopy
A Problem-based Approach

by Jeffrey H. Simpson

  • Publisher : Academic Press
  • Release : 2012
  • Pages : 574
  • ISBN : 0123849705
  • Language : En, Es, Fr & De
GET BOOK

"The second edition of this book comes with a number of new figures, passages, and problems. Increasing the number of figures from 290 to 448 has necessarily added considerable length, weight, and, expense. It is my hope that the book has not lost any of its readability and accessibility. I firmly believe that most of the concepts needed to learn organic structure determination using nuclear magnetic resonance spectroscopy do not require an extensive mathematical background. It is my hope that the manner in which the material contained in this book is presented both reflects and validates this belief"--

Instructor's Guide and Solutions Manual to Organic Structures from 2D NMR Spectra, Instructor's Guide and Solutions Manual

Instructor's Guide and Solutions Manual to Organic Structures from 2D NMR Spectra, Instructor's Guide and Solutions Manual
A Book

by L. D. Field,A. M. Magill,H. L. Li

  • Publisher : John Wiley & Sons
  • Release : 2015-03-30
  • Pages : 392
  • ISBN : 1119027276
  • Language : En, Es, Fr & De
GET BOOK

The text Organic Structures from 2D NMR Spectra contains a graded set of structural problems employing 2D-NMR spectroscopy. The Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra is a set of step-by-step worked solutions to every problem in Organic Structures from 2D NMR Spectra. While it is absolutely clear that there are many ways to get to the correct solution of any of the problems, the instructors guide contains at least one complete pathway to every one of the questions. In addition, the instructors guide carefully rationalises every peak in every spectrum in relation to the correct structure. The Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra: Is a complete set of worked solutions to the problems contained in Organic Structures from 2D NMR Spectra. Provides a step-by-step description of the process to derive structures from spectra as well as annotated 2D spectra indicating the origin of every cross peak. Highlights common artefacts and re-enforces the important characteristics of the most common techniques 2D NMR techniques including COSY, NOESY, HMBC, TOCSY, CH-Correlation and multiplicity-edited C-H Correlation. This guide is an essential aid to those teachers, lecturers and instructors who use Organic Structures from 2D NMR as a text to teach students of Chemistry, Pharmacy, Biochemistry and those taking courses in Organic Chemistry.

Organic Structures from Spectra

Organic Structures from Spectra
A Book

by L. D. Field,S. Sternhell,J. R. Kalman

  • Publisher : John Wiley & Sons
  • Release : 2013-02-18
  • Pages : 510
  • ISBN : 1118325451
  • Language : En, Es, Fr & De
GET BOOK

The derivation of structural information from spectroscopic data is now an integral part of organic chemistry courses at all Universities. A critical part of any such course is a suitable set of problems to develop the student’s understanding of how structures are determined from spectra. Organic Structures from Spectra, Fifth Edition is a carefully chosen set of more than 280 structural problems employing the major modern spectroscopic techniques, a selection of 27 problems using 2D-NMR spectroscopy, more than 20 problems specifically dealing with the interpretation of spin-spin coupling in proton NMR spectra and 8 problems based on the quantitative analysis of mixtures using proton and carbon NMR spectroscopy. All of the problems are graded to develop and consolidate the student’s understanding of organic spectroscopy. The accompanying text is descriptive and only explains the underlying theory at a level which is sufficient to tackle the problems. The text includes condensed tables of characteristic spectral properties covering the frequently encountered functional groups. The examples themselves have been selected to include all important common structural features found in organic compounds and to emphasise connectivity arguments. Many of the compounds were synthesised specifically for this purpose. There are many more easy problems, to build confidence and demonstrate basic principles, than in other collections. The fifth edition of this popular textbook: • includes more than 250 new spectra and more than 25 completely new problems; • now incorporates an expanded suite of new problems dealing with the analysis of 2D NMR spectra (COSY, C H Correlation spectroscopy, HMBC, NOESY and TOCSY); • has been expanded and updated to reflect the new developments in NMR and to retire older techniques that are no longer in common use; • provides a set of problems dealing specifically with the quantitative analysis of mixtures using NMR spectroscopy; • features proton NMR spectra obtained at 200, 400 and 600 MHz and 13C NMR spectra include DEPT experiments as well as proton-coupled experiments; • contains 6 problems in the style of the experimental section of a research paper and two examples of fully worked solutions. Organic Structures from Spectra, Fifth Edition will prove invaluable for students of Chemistry, Pharmacy and Biochemistry taking a first course in Organic Chemistry. Contents Preface Introduction Ultraviolet Spectroscopy Infrared Spectroscopy Mass Spectrometry Nuclear Magnetic Resonance Spectroscopy 2DNMR Problems Index Reviews from earlier editions “Your book is becoming one of the “go to” books for teaching structure determination here in the States. Great work!” “…I would definitely state that this book is the most useful aid to basic organic spectroscopy teaching in existence and I would strongly recommend every instructor in this area to use it either as a source of examples or as a class textbook”. Magnetic Resonance in Chemistry “Over the past year I have trained many students using problems in your book - they initially find it as a task. But after doing 3-4 problems with all their brains activities... working out the rest of the problems become a mania. They get addicted to the problem solving and every time they solve a problem by themselves, their confident level also increases.” “I am teaching the fundamentals of Molecular Spectroscopy and your books represent excellent sources of spectroscopic problems for students.”

Organic Structure Determination Using 2-D NMR Spectroscopy

Organic Structure Determination Using 2-D NMR Spectroscopy
A Problem-Based Approach

by Jeffrey H. Simpson

  • Publisher : Academic Press
  • Release : 2010-07-19
  • Pages : 384
  • ISBN : 9780080916637
  • Language : En, Es, Fr & De
GET BOOK

This book contains 30-40 quality 2D NMR data sets following an introductory section describing the methodology employed. Many other books describe the methods used, but none offer a large number of problems. Instructors at universities and colleges at the present time are forced to cobble together problems from a wide range of sources. The fragmentary approach to assembling course materials has a negative impact on course continuity and thus adversely impacts student retention. This book will stand as a single source to which instructors and students can go to obtain a comprehensive compendium of NMR problems of varying difficulty. • Presents strategies for assigning resonances to known structures and for deducing structures of unknown organic molecules based on their NMR spectra • Contains 20 known and 20 unknown structure determination problems

Problems in Organic Structure Determination

Problems in Organic Structure Determination
A Practical Approach to NMR Spectroscopy

by Roger G. Linington,Philip G. Williams,John B. MacMillan

  • Publisher : CRC Press
  • Release : 2015-10-14
  • Pages : 755
  • ISBN : 1498719635
  • Language : En, Es, Fr & De
GET BOOK

At a point where most introductory organic chemistry texts end, this problems-based workbook picks up the thread to lead students through a graduated set of 120 problems. With extensive detailed spectral data, it contains a variety of problems designed by renowned authors to develop proficiency in organic structure determination. This workbook leads you from basic problems encountered in introductory organic chemistry textbooks to highly complex natural product-based problems. It presents a concept-based learning platform, introducing key concepts sequentially and reinforcing them with problems that exemplify the complexities and underlying principles that govern each concept. The book is organized in such a way that allows you to work through the problems in order or in selections according to your experience and desired area of mastery. It also provides access to raw data files online that can be downloaded and used for data manipulation using freeware or commercial software. With its problem-centered approach, integrated use of online and digital resources, and appendices that include notes and hints, Problems in Organic Structure Determination: A Practical Approach to NMR Spectroscopy is an outstanding resource for training students and professionals in structure determination.

Spectroscopic Methods in Organic Chemistry

Spectroscopic Methods in Organic Chemistry
A Book

by Ian Fleming,Dudley Williams

  • Publisher : Springer Nature
  • Release : 2020-01-17
  • Pages : 432
  • ISBN : 3030182525
  • Language : En, Es, Fr & De
GET BOOK

This book is a well-established guide to the interpretation of the mass, ultraviolet, infrared and nuclear magnetic resonance spectra of organic compounds. It is designed for students of organic chemistry taking a course in the application of these techniques to structure determination. The text also remains useful as a source of data for organic chemists to keep on their desks throughout their career. In the seventh edition, substantial portions of the text have been revised reflecting knowledge gained during the author's teaching experience over the last seven years. The chapter on NMR has been divided into two separate chapters covering the 1D and 2D experiments. The discussion is also expanded to include accounts of the physics at a relatively simple level, following the development of the magnetization vectors as each pulse sequence is introduced. The emphasis on the uses of NMR spectroscopy in structure determination is retained. Worked examples and problem sets are included on a chapter level to allow students to practise their skills by determining the chemical structures of unknown compounds.

Introduction to Spectroscopy

Introduction to Spectroscopy
A Book

by Donald L. Pavia,Gary M. Lampman,George S. Kriz,James A. Vyvyan

  • Publisher : Cengage Learning
  • Release : 2014-01-01
  • Pages : 784
  • ISBN : 1305177827
  • Language : En, Es, Fr & De
GET BOOK

Introduce your students to the latest advances in spectroscopy with the text that has set the standard in the field for more than three decades: INTRODUCTION TO SPECTROSCOPY, 5e, by Donald L. Pavia, Gary M. Lampman, George A. Kriz, and James R. Vyvyan. Whether you use the book as a primary text in an upper-level spectroscopy course or as a companion book with an organic chemistry text, your students will receive an unmatched, systematic introduction to spectra and basic theoretical concepts in spectroscopic methods. This acclaimed resource features up-to-date spectra; a modern presentation of one-dimensional nuclear magnetic resonance (NMR) spectroscopy; an introduction to biological molecules in mass spectrometry; and coverage of modern techniques alongside DEPT, COSY, and HECTOR. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Multidimensional Time-Resolved Spectroscopy

Multidimensional Time-Resolved Spectroscopy
A Book

by Tiago Buckup,Jérémie Léonard

  • Publisher : Springer
  • Release : 2018-12-07
  • Pages : 320
  • ISBN : 3030024784
  • Language : En, Es, Fr & De
GET BOOK

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Modern NMR Techniques for Synthetic Chemistry

Modern NMR Techniques for Synthetic Chemistry
A Book

by Julie Fisher

  • Publisher : CRC Press
  • Release : 2014-10-13
  • Pages : 364
  • ISBN : 1466592257
  • Language : En, Es, Fr & De
GET BOOK

A blend of theory and practical advice, Modern NMR Techniques for Synthetic Chemistry illustrates how NMR spectroscopy can be used to determine the abundance, size, shape, and function of organic molecules. It provides you with a description the NMR technique used (more pictorial than mathematical), indicating the most common pulse sequences, some practical information as appropriate, followed by illustrative examples. This format is followed for each chapter so you can skip the more theoretical details if the practical aspects are what interest you. Following a discussion of basic parameters, the book describes the utility of NMR in detecting and quantifying dynamic processes, with particular emphasis on the usefulness of saturation-transfer (STD) techniques. It details pulsed–field gradient approaches to diffusion measurement, diffusion models, and approaches to ‘inorganic’ nuclei detection, important as many synthetic pathways to new organics involve heavier elements. The text concludes with coverage of applications of NMR to the analysis of complex mixtures, natural products, carbohydrates, and nucleic acids—all areas of activity for researchers working at the chemistry-life sciences interface. The book’s unique format provides some theoretical insight into the NMR technique used, indicating the most common pulse sequences. The book draws upon several NMR methods that are resurging or currently hot in the field and indicates the specific pulse sequence used by various spectrometer manufacturers for each technique. It examines the analysis of complex mixtures, a feature not found in most books on this topic.

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy
An Introduction to Principles, Applications, and Experimental Methods

by Joseph B. Lambert,Eugene P. Mazzola,Clark D. Ridge

  • Publisher : Wiley
  • Release : 2019-01-04
  • Pages : 480
  • ISBN : 1119295238
  • Language : En, Es, Fr & De
GET BOOK

Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.

NMR in Pharmaceutical Science

NMR in Pharmaceutical Science
A Book

by Jeremy R. Everett,Robin K. Harris,John C. Lindon,Ian D. Wilson

  • Publisher : John Wiley & Sons
  • Release : 2015-08-20
  • Pages : 504
  • ISBN : 1118660242
  • Language : En, Es, Fr & De
GET BOOK

NMR in Pharmaceutical Sciences is intended to be a comprehensive source of information for the many individuals that utilize MR in studies of relevance to the pharmaceutical sector. The book is intended to educate and inform those who develop and apply MR approaches within the wider pharmaceutical environment, emphasizing the toolbox that is available to spectroscopists and radiologists. This book is structured on the key processes in drug discovery, development and manufacture, but underpinned by an understanding of fundamental NMR principles and the unique contribution that NMR (including MRI) can provide. After an introductory chapter, which constitutes an overview, the content is organised into five sections. The first section is on the basics of NMR theory and relevant experimental methods. The rest follow a sequence based on the chronology of drug discovery and development, firstly 'Idea to Lead' then 'Lead to Drug Candidate', followed by 'Clinical Development', and finally 'Drug Manufacture'. The thirty one chapters cover a vast range of topics from analytical chemistry, including aspects involved in regulatory matters and in the prevention of fraud, to clinical imaging studies. Whilst this comprehensive volume will be essential reading for many scientists based in pharmaceutical and related industries, it should also be of considerable value to a much wider range of academic scientists whose research is related to the various aspects of pharmaceutical R&D; for them it will supply vital understanding of pharmaceutical industrial concerns and the basis of key decision making processes. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes

Organic Structures from 2D NMR Spectra

Organic Structures from 2D NMR Spectra
A Book

by L. D. Field,H. L. Li,A. M. Magill

  • Publisher : John Wiley & Sons
  • Release : 2015-06-15
  • Pages : 328
  • ISBN : 1118868943
  • Language : En, Es, Fr & De
GET BOOK

The derivation of structural information from spectroscopic data is now an integral part of organic chemistry courses at all Universities. Over recent years, a number of powerful two-dimensional NMR techniques (e.g. HSQC, HMBC, TOCSY, COSY and NOESY) have been developed and these have vastly expanded the amount of structural information that can be obtained by NMR spectroscopy. Improvements in NMR instrumentation now mean that 2D NMR spectra are routinely (and sometimes automatically) acquired during the identification and characterisation of organic compounds. Organic Structures from 2D NMR Spectra is a carefully chosen set of more than 60 structural problems employing 2D-NMR spectroscopy. The problems are graded to develop and consolidate a student’s understanding of 2D NMR spectroscopy. There are many easy problems at the beginning of the collection, to build confidence and demonstrate the basic principles from which structural information can be extracted using 2D NMR. The accompanying text is very descriptive and focussed on explaining the underlying theory at the most appropriate level to sufficiently tackle the problems. Organic Structures from 2D NMR Spectra Is a graded series of about 60 problems in 2D NMR spectroscopy that assumes a basic knowledge of organic chemistry and a basic knowledge of one-dimensional NMR spectroscopy Incorporates the basic theory behind 2D NMR and those common 2D NMR experiments that have proved most useful in solving structural problems in organic chemistry Focuses on the most common 2D NMR techniques – including COSY, NOESY, HMBC, TOCSY, CH-Correlation and multiplicity-edited C-H Correlation. Incorporates several examples containing the heteronuclei 31P, 15N and 19F Organic Structures from 2D NMR Spectra is a logical follow-on from the highly successful “Organic Structures from Spectra” which is now in its fifth edition. The book will be invaluable for students of Chemistry, Pharmacy, Biochemistry and those taking courses in Organic Chemistry. Also available: Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra

Pharmaceutical Analysis E-Book

Pharmaceutical Analysis E-Book
A Textbook for Pharmacy Students and Pharmaceutical Chemists

by David G. Watson

  • Publisher : Elsevier Health Sciences
  • Release : 2015-12-24
  • Pages : 480
  • ISBN : 0702069884
  • Language : En, Es, Fr & De
GET BOOK

Pharmaceutical analysis determines the purity, concentration, active compounds, shelf life, rate of absorption in the body, identity, stability, rate of release etc. of a drug. Testing a pharmaceutical product involves a variety of chemical, physical and microbiological analyses. It is reckoned that over £10 billion is spent annually in the UK alone on pharmaceutical analysis, and the analytical processes described in this book are used in industries as diverse as food, beverages, cosmetics, detergents, metals, paints, water, agrochemicals, biotechnological products and pharmaceuticals. This is the key textbook in pharmaceutical analysis, now revised and updated for its fourth edition. Worked calculation examples Self-assessment Additional problems (self tests) Practical boxes Key points boxes New chapter on Biotech products. New chapter on electrochemical methods in diagnostics. Greatly extended chapter on molecular emission spectroscopy to accommodate developments and innovations in the area. Now on StudentConsult

Pharmaceutical Analysis,A Textbook for Pharmacy Students and Pharmaceutical Chemists,3

Pharmaceutical Analysis,A Textbook for Pharmacy Students and Pharmaceutical Chemists,3
Pharmaceutical Analysis

by David G. Watson

  • Publisher : Elsevier Health Sciences
  • Release : 2012
  • Pages : 427
  • ISBN : 0702046213
  • Language : En, Es, Fr & De
GET BOOK

An introductory text, written with the needs of the student in mind, which explains all the most important techniques used in the analysis of pharmaceuticals - a key procedure in ensuring the quality of drugs. The text is enhanced throughout with keypoints and self-assessment boxes, to aid student learning.

Challenges in Molecular Structure Determination

Challenges in Molecular Structure Determination
A Book

by Manfred Reichenbächer,Jürgen Popp

  • Publisher : Springer Science & Business Media
  • Release : 2012-03-22
  • Pages : 482
  • ISBN : 3642243908
  • Language : En, Es, Fr & De
GET BOOK

Taking a problem-based approach, the authors provide a practice-oriented and systematic introduction to both organic and inorganic structure determination by spectroscopic methods. This includes mass spectrometry, vibrational spectroscopies, UV/VIS spectroscopy and NMR as well as applying combinations of these methods. The authors show how to elucidate chemical structures with a minimal number of spectroscopic techniques. Readers can train their skills by more than 400 problems with varying degree of sophistication. Interactive Powerpoint-Charts are available as Extra Materials to support self-study.

Intermediate Organic Chemistry

Intermediate Organic Chemistry
A Book

by Ann M. Fabirkiewicz,John C. Stowell

  • Publisher : John Wiley & Sons
  • Release : 2015-07-13
  • Pages : 384
  • ISBN : 1118662202
  • Language : En, Es, Fr & De
GET BOOK

This book presents key aspects of organic synthesis – stereochemistry, functional group transformations, bond formation, synthesis planning, mechanisms, and spectroscopy – and a guide to literature searching in a reader-friendly manner. • Helps students understand the skills and basics they need to move from introductory to graduate organic chemistry classes • Balances synthetic and physical organic chemistry in a way accessible to students • Features extensive end-of-chapter problems • Updates include new examples and discussion of online resources now common for literature searches • Adds sections on protecting groups and green chemistry along with a rewritten chapter surveying organic spectroscopy

Handbook of Drug Metabolism, Third Edition

Handbook of Drug Metabolism, Third Edition
A Book

by Paul G. Pearson,Larry C. Wienkers

  • Publisher : CRC Press
  • Release : 2019-05-20
  • Pages : 750
  • ISBN : 1482262045
  • Language : En, Es, Fr & De
GET BOOK

This book continues to be the definitive reference on drug metabolism with an emphasis on new scientific and regulatory developments. It has been updated based on developments that have occurred in the last 5 years, with new chapters on large molecules disposition, stereo-selectivity in drug metabolism, drug transporters and metabolic activation of drugs. Some chapters have been prepared by new authors who have emerged as subject area experts in the decade that has passed since publication of the first edition.

Recent Trends in Biofilm Science and Technology

Recent Trends in Biofilm Science and Technology
A Book

by Manuel Simoes,Anabel Borges,Lucia Chaves Simoes

  • Publisher : Academic Press
  • Release : 2020-06-04
  • Pages : 416
  • ISBN : 0128194987
  • Language : En, Es, Fr & De
GET BOOK

Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians. Presents an overview of the process of biofilm formation and its implications Provides a clearer understanding of the role of biofilms in infections Creates a foundation for further research on novel control strategies Updates readers on the remarkable amount of knowledge on the processes that regulate biofilm formation

Advanced Organic Spectroscopy Tools for Beginning Organic Spectroscopists

Advanced Organic Spectroscopy Tools for Beginning Organic Spectroscopists
Using Simulated Spectra to Learn How to Solve Complicated Organic Structures

by Phil Beauchamp

  • Publisher : Unknown Publisher
  • Release : 2016-09-20
  • Pages : 374
  • ISBN : 9781537473482
  • Language : En, Es, Fr & De
GET BOOK

The goal of this book is to show beginning organic students how to interpret modern organic spectra to solve challenging organic structures, using IR, MS, 1H, 13C, DEPT and several 2D variations of NMR (COSY, HSQC/HETCOR and HMBC). Theory and instrumentation are not emphasized, but are sufficiently explained so that students have a basic idea about how each method works. Simulated spectra are used to remove real-life complexities that make structures too difficult for beginners to solve.It is exciting for beginning students to learn how to correctly generate an organic structure from a hodgepodge of lines and numbers. This book will show how to do that. A very specific plan of attack is presented to approach every problem in a step-by-step fashion, including a one page worksheet to summarize and organize the information to help focus their thinking for every "What if...'" question that might arise. Many simple problems are presented to show the mechanical steps of how each method is used to help solve organic structures. More complex problems are designed to be simple enough for beginning students, yet complex enough to require a sustained effort to solve using advanced NMR methods. Real molecules are not used, thereby avoiding the difficulties of overlapping peaks and/or extraneous peaks that should not be there and/or missing peaks that should be there. Students will find a clear path to a correct structure, without encountering real-life frustrations. Most of the common functional group features of organic chemistry are included. Oxygen (alcohols, ethers, esters), nitrogen (amines, amides, nitriles, nitro), halogens and/or sulfur atoms are included at key locations so that chemical shifts are different enough to distinguish each type of proton and carbon in the 1H, 13C, COSY, HETCOR/HSQC and HMBC spectra. This minimizes overlap so that the spectra are easier to interpret for beginning students. It is really the various types of NMR spectra that solve a structure. For the more complex problems, 1H, 13C, DEPT, COSY, HETCOR/HSQC and HMBC are included. An IR chapter is included and a simulated IR is provided in structure problems to provide helpful functional group clues, and details about how alkenes and/or aromatic rings are substituted. In the mass spectrometry chapter, examples of the most common organic monofunctional groups are presented and discussed. However, in complex structure problems, MS is mainly used to provide a molecular weight and indicate the presence of nitrogen, chlorine, bromine and/or sulfur when they are present. These clues can be used to obtain a molecular formula and degrees of unsaturation. Pi bonds can be distinguished from rings using the 13C, which provides a good starting point for solving a structure. Problems range from: shorter structure problems that show how each technique can provide clues to solve a structure; to intermediate level problems that require multiple techniques; to very challenging structure problems that require all of the techniques presented in this book. This workbook will work best for students who are learning basic organic structure determination, and want or need to build on what they are learning to take it to the next level. This can be accomplished in a classroom setting or through self-study by motivated students. If you are an instructor who loves spectroscopy, you might consider trying this approach in one of your course settings to judge for yourself if it works for you and your students. If you are an interested student who can't get enough spectroscopy, just have fun working problems.

Remington

Remington
The Science and Practice of Pharmacy

by David B. Troy,Paul Beringer

  • Publisher : Lippincott Williams & Wilkins
  • Release : 2006
  • Pages : 2393
  • ISBN : 9780781746731
  • Language : En, Es, Fr & De
GET BOOK

For over 100 years, Remington has been the definitive textbook and reference on the science and practice of pharmacy. This Twenty-First Edition keeps pace with recent changes in the pharmacy curriculum and professional pharmacy practice. More than 95 new contributors and 5 new section editors provide fresh perspectives on the field. New chapters include pharmacogenomics, application of ethical principles to practice dilemmas, technology and automation, professional communication, medication errors, re-engineering pharmacy practice, management of special risk medicines, specialization in pharmacy practice, disease state management, emergency patient care, and wound care. Purchasers of this textbook are entitled to a new, fully indexed Bonus CD-ROM, affording instant access to the full content of Remington in a convenient and portable format.