# Download Practical Machine Learning for Data Analysis Using Python Ebook PDF

**Practical Machine Learning for Data Analysis Using Python**

A Book

#### by **Abdulhamit Subasi**

- Publisher : Academic Press
- Release : 2020-06-05
- Pages : 534
- ISBN : 0128213809
- Language : En, Es, Fr & De

Practical Machine Learning for Data Analysis Using Python is a problem solver’s guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data Explores important classification and regression algorithms as well as other machine learning techniques Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

**Practical Machine Learning for Streaming Data with Python**

Design, Develop, and Validate Online Learning Models

#### by **Sayan Putatunda**

- Publisher : Apress
- Release : 2021-04-09
- Pages : 118
- ISBN : 9781484268667
- Language : En, Es, Fr & De

Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow. Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more. What You'll Learn Understand machine learning with streaming data concepts Review incremental and online learning Develop models for detecting concept drift Explore techniques for classification, regression, and ensemble learning in streaming data contexts Apply best practices for debugging and validating machine learning models in streaming data context Get introduced to other open-source frameworks for handling streaming data. Who This Book Is For Machine learning engineers and data science professionals

**Practical Machine Learning with Python**

A Problem-Solver's Guide to Building Real-World Intelligent Systems

#### by **Dipanjan Sarkar,Raghav Bali,Tushar Sharma**

- Publisher : Apress
- Release : 2017-12-20
- Pages : 530
- ISBN : 1484232070
- Language : En, Es, Fr & De

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

**Practical Machine Learning with H2O**

Powerful, Scalable Techniques for Deep Learning and AI

#### by **Darren Cook**

- Publisher : "O'Reilly Media, Inc."
- Release : 2016-12-05
- Pages : 300
- ISBN : 1491964553
- Language : En, Es, Fr & De

Machine learning has finally come of age. With H2O software, you can perform machine learning and data analysis using a simple open source framework that’s easy to use, has a wide range of OS and language support, and scales for big data. This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms. If you’re familiar with R or Python, know a bit of statistics, and have some experience manipulating data, author Darren Cook will take you through H2O basics and help you conduct machine-learning experiments on different sample data sets. You’ll explore several modern machine-learning techniques such as deep learning, random forests, unsupervised learning, and ensemble learning. Learn how to import, manipulate, and export data with H2O Explore key machine-learning concepts, such as cross-validation and validation data sets Work with three diverse data sets, including a regression, a multinomial classification, and a binomial classification Use H2O to analyze each sample data set with four supervised machine-learning algorithms Understand how cluster analysis and other unsupervised machine-learning algorithms work

**Practical Machine Learning**

A Book

#### by **Sunila Gollapudi**

- Publisher : Packt Publishing Ltd
- Release : 2016-01-30
- Pages : 468
- ISBN : 1784394017
- Language : En, Es, Fr & De

Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.

**Python Machine Learning**

A Book

#### by **Sebastian Raschka,Vahid Mirjalili**

- Publisher : Packt Publishing Ltd
- Release : 2017-09-20
- Pages : 622
- ISBN : 1787126021
- Language : En, Es, Fr & De

Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book Second edition of the bestselling book on Machine Learning A practical approach to key frameworks in data science, machine learning, and deep learning Use the most powerful Python libraries to implement machine learning and deep learning Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn Understand the key frameworks in data science, machine learning, and deep learning Harness the power of the latest Python open source libraries in machine learning Explore machine learning techniques using challenging real-world data Master deep neural network implementation using the TensorFlow library Learn the mechanics of classification algorithms to implement the best tool for the job Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

**Practical Machine Learning with R**

Define, build, and evaluate machine learning models for real-world applications

#### by **Brindha Priyadarshini Jeyaraman,Ludvig Renbo Olsen,Monicah Wambugu**

- Publisher : Packt Publishing Ltd
- Release : 2019-08-30
- Pages : 416
- ISBN : 1838552847
- Language : En, Es, Fr & De

Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key Features Gain a comprehensive overview of different machine learning techniques Explore various methods for selecting a particular algorithm Implement a machine learning project from problem definition through to the final model Book Description With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learn Define a problem that can be solved by training a machine learning model Obtain, verify and clean data before transforming it into the correct format for use Perform exploratory analysis and extract features from data Build models for neural net, linear and non-linear regression, classification, and clustering Evaluate the performance of a model with the right metrics Implement a classification problem using the neural net package Employ a decision tree using the random forest library Who this book is for If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.

**Python Machine Learning By Example**

Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn, 3rd Edition

#### by **Yuxi (Hayden) Liu**

- Publisher : Packt Publishing Ltd
- Release : 2020-10-30
- Pages : 526
- ISBN : 1800203861
- Language : En, Es, Fr & De

Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms.

**Building Machine Learning Systems with Python - Third Edition**

A Book

#### by **Luis Coelho,Wilhelm Richert,Matthieu Brucher**

- Publisher : Unknown Publisher
- Release : 2018
- Pages : 406
- ISBN : 9876543210XXX
- Language : En, Es, Fr & De

Get more from your data by creating practical machine learning systems with Python Key Features Develop your own Python-based machine learning system Discover how Python offers multiple algorithms for modern machine learning systems Explore key Python machine learning libraries to implement in your projects Book Description Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems. Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you'll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems. By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks. What you will learn Build a classification system that can be applied to text, images, and sound Employ Amazon Web Services (AWS) to run analysis on the cloud Solve problems related to regression using scikit-learn and TensorFlow Recommend products to users based on their past purchases Understand different ways to apply deep neural networks on structured data Address recent developments in the field of computer vision and reinforcement learning Who this book is for Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python progr ...

**Pragmatic Machine Learning with Python**

Learn How to Deploy Machine Learning Models in Production

#### by **Avishek Nag**

- Publisher : BPB Publications
- Release : 2020-04-30
- Pages : 340
- ISBN : 938984536X
- Language : En, Es, Fr & De

An easy-to-understand guide to learn practical Machine Learning techniques with Mathematical foundations KEY FEATURES - A balanced combination of underlying mathematical theories & practical examples with Python code - Coverage of latest topics like multi-label classification, Text Mining, Doc2Vec, Word2Vec, XMeans clustering, unsupervised outlier detection, techniques to deploy ML models in production-grade systems with PMML, etc - Coverage of sufficient & relevant visualization techniques specific to any topic DESCRIPTION This book will be ideal for working professionals who want to learn Machine Learning from scratch. The first chapter will be an introductory chapter to make readers comfortable with the idea of Machine Learning and the required mathematical theories. There will be a balanced combination of underlying mathematical theories corresponding to any Machine Learning topic and its implementation using Python. Most of the implementations will be based on ‘scikit-learn,’ but other Python libraries like ‘Gensim’ or ‘PyTorch’ will also be used for some topics like text analytics or deep learning. The book will be divided into chapters based on primary Machine Learning topics like Classification, Regression, Clustering, Deep Learning, Text Mining, etc. The book will also explain different techniques of putting Machine Learning models into production-grade systems using Big Data or Non-Big Data flavors and standards for exporting models. WHAT WILL YOU LEARN - Get familiar with practical concepts of Machine Learning from ground zero - Learn how to deploy Machine Learning models in production - Understand how to do “Data Science Storytelling” - Explore the latest topics in the current industry about Machine Learning WHO THIS BOOK IS FOR This book would be ideal for experienced Software Professionals who are trying to get into the field of Machine Learning. Anyone who wishes to Learn Machine Learning concepts and models in the production lifecycle. TABLE OF CONTENTS 1. Introduction to Machine Learning & Mathematical preliminaries 2. Classification 3. Regression 4. Clustering 5. Deep Learning & Neural Networks 6. Miscellaneous Unsupervised Learning 7. Text Mining 8. Machine Learning models in production 9. Case Studies & Data Science Storytelling

**Building Machine Learning Systems with Python**

Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow, 3rd Edition

#### by **Luis Pedro Coelho,Willi Richert,Matthieu Brucher**

- Publisher : Packt Publishing Ltd
- Release : 2018-07-31
- Pages : 406
- ISBN : 1788622227
- Language : En, Es, Fr & De

Get more from your data by creating practical machine learning systems with Python Key Features Develop your own Python-based machine learning system Discover how Python offers multiple algorithms for modern machine learning systems Explore key Python machine learning libraries to implement in your projects Book Description Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems. Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you’ll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems. By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks. What you will learn Build a classification system that can be applied to text, images, and sound Employ Amazon Web Services (AWS) to run analysis on the cloud Solve problems related to regression using scikit-learn and TensorFlow Recommend products to users based on their past purchases Understand different ways to apply deep neural networks on structured data Address recent developments in the field of computer vision and reinforcement learning Who this book is for Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python programming is expected.

**Practical Machine Learning and Image Processing**

For Facial Recognition, Object Detection, and Pattern Recognition Using Python

#### by **Himanshu Singh**

- Publisher : Apress
- Release : 2019-02-26
- Pages : 169
- ISBN : 1484241495
- Language : En, Es, Fr & De

Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.

**Machine Learning and Data Science with Python**

A Complete Beginners Guide

#### by **Abhilash Nelson**

- Publisher : Unknown Publisher
- Release : 2019
- Pages : 329
- ISBN : 9876543210XXX
- Language : En, Es, Fr & De

Machine learning and data science for programming beginners using Python with scikit-learn, SciPy, Matplotlib and Pandas About This Video Learn machine learning and data science using Python A practical course designed for beginners who are interested in machine learning using Python In Detail Artificial intelligence, machine learning, and deep learning neural networks are the most used terms in the technology world today. They're also the most misunderstood and confused terms. Artificial intelligence is a broad spectrum of science which tries to make machines intelligent like humans, while machine learning and neural networks are two subsets that sit within this vast machine learning platform. But in this course, you will focus mainly on machine learning, which will include preparing your machine to make it ready for a prediction test. You will be using Python as your programming language. Python is a great tool for the development of programs that perform data analysis and prediction. It has a variety of classes and features that perform complex mathematical analyses and provide solutions in just a few lines of code, making it easier for you to get up to speed with data science and machine learning. Machine learning and data science jobs are among the most lucrative in the technology industry in recent times. Exploring this course will help you get well-versed with essential concepts and prepare you for a career in these fields. Downloading the example code for this course: You can download the example code files for this course on GitHub at the following link: https://github.com/PacktPublishing/Machine-Learning-and-Data-Science-with-Python-A-Complete-Beginners-Guide . If you require support please email: customercare@packt.com.

**Python: Real-World Data Science**

A Book

#### by **Dusty Phillips,Fabrizio Romano,Phuong Vo.T.H,Martin Czygan,Robert Layton,Sebastian Raschka**

- Publisher : Packt Publishing Ltd
- Release : 2016-06-10
- Pages : 1255
- ISBN : 1786468417
- Language : En, Es, Fr & De

Unleash the power of Python and its robust data science capabilities About This Book Unleash the power of Python 3 objects Learn to use powerful Python libraries for effective data processing and analysis Harness the power of Python to analyze data and create insightful predictive models Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics Who This Book Is For Entry-level analysts who want to enter in the data science world will find this course very useful to get themselves acquainted with Python's data science capabilities for doing real-world data analysis. What You Will Learn Install and setup Python Implement objects in Python by creating classes and defining methods Get acquainted with NumPy to use it with arrays and array-oriented computing in data analysis Create effective visualizations for presenting your data using Matplotlib Process and analyze data using the time series capabilities of pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply data mining concepts to real-world problems Compute on big data, including real-time data from the Internet Explore how to use different machine learning models to ask different questions of your data In Detail The Python: Real-World Data Science course will take you on a journey to become an efficient data science practitioner by thoroughly understanding the key concepts of Python. This learning path is divided into four modules and each module are a mini course in their own right, and as you complete each one, you'll have gained key skills and be ready for the material in the next module. The course begins with getting your Python fundamentals nailed down. After getting familiar with Python core concepts, it's time that you dive into the field of data science. In the second module, you'll learn how to perform data analysis using Python in a practical and example-driven way. The third module will teach you how to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis to more complex data types including text, images, and graphs. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. In the final module, we'll discuss the necessary details regarding machine learning concepts, offering intuitive yet informative explanations on how machine learning algorithms work, how to use them, and most importantly, how to avoid the common pitfalls. Style and approach This course includes all the resources that will help you jump into the data science field with Python and learn how to make sense of data. The aim is to create a smooth learning path that will teach you how to get started with powerful Python libraries and perform various data science techniques in depth.

**Practical Machine Learning: Innovations in Recommendation**

A Book

#### by **Ted Dunning,Ellen Friedman,Ellen Friedman, M.D.**

- Publisher : "O'Reilly Media, Inc."
- Release : 2014-08-18
- Pages : 56
- ISBN : 1491915722
- Language : En, Es, Fr & De

Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommendation system. Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You’ll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time. Understand the tradeoffs between simple and complex recommenders Collect user data that tracks user actions—rather than their ratings Predict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysis Use search technology to offer recommendations in real time, complete with item metadata Watch the recommender in action with a music service example Improve your recommender with dithering, multimodal recommendation, and other techniques

**Python Machine Learning for Beginners**

Learning from Scratch NumPy, Pandas, Matplotlib, Seaborn, Scikitlearn, and TensorFlow for Machine Learning and Data Science

#### by **Ai Publishing**

- Publisher : Unknown Publisher
- Release : 2020-10-23
- Pages : 302
- ISBN : 9781734790153
- Language : En, Es, Fr & De

Python Machine Learning for BeginnersMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay.Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing and salesYou name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future.But what does a Machine Learning professional do?A Machine Learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast.How Is This Book Different?AI Publishing strongly believes in learning by doing methodology. With this in mind, we have crafted this book with care. You will find that the emphasis on the theoretical aspects of machine learning is equal to the emphasis on the practical aspects of the subject matter.You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science.Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques.When you buy this book, your learning journey becomes so much easier. The reason is you get instant access to all the related learning material presented with this book--references, PDFs, Python codes, and exercises--on the publisher's website. All this material is available to you at no extra cost. You can download the ML datasets used in this book at runtime, or you can access them via the Resources/Datasets folder.You'll also find the short course on Python programming in the second chapter immensely useful, especially if you are new to Python. Since this book gives you access to all the Python codes and datasets, you only need access to a computer with the internet to get started. The topics covered include: Introduction and Environment Setup Python Crash Course Python NumPy Library for Data Analysis Introduction to Pandas Library for Data Analysis Data Visualization via Matplotlib, Seaborn, and Pandas Libraries Solving Regression Problems in ML Using Sklearn Library Solving Classification Problems in ML Using Sklearn Library Data Clustering with ML Using Sklearn Library Deep Learning with Python TensorFlow 2.0 Dimensionality Reduction with PCA and LDA Using Sklearn Click the BUY NOW button to start your Machine Learning journey.

**Large Scale Machine Learning with Python**

A Book

#### by **Bastiaan Sjardin,Luca Massaron,Alberto Boschetti**

- Publisher : Packt Publishing Ltd
- Release : 2016-08-03
- Pages : 420
- ISBN : 1785888021
- Language : En, Es, Fr & De

Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.

**Python Machine Learning**

Introduction To Machine Learning With Python

#### by **Frank Millstein**

- Publisher : Frank Millstein
- Release : 2020-07-05
- Pages : 128
- ISBN : 9876543210XXX
- Language : En, Es, Fr & De

Python Machine Learning Machine learning is the science of getting machines and computers to act and learn on their own without being programmed explicitly. In just the past decade, this field has given us practical speech recognition, self-driving cars, greatly improved understanding of the overall human genome, effective web search and much more. Therefore, there is no wondering why machine learning is so pervasive today. In this book, you will learn more about interpreting machine learning techniques using Python. You will also gain practice as you implement the most popular machine learning techniques on some real-world examples and you will learn both about the theoretical and practical machine learning implementation using Python's machine learning libraries. At the end of the book, you will be able to cope with more complex machine learning issues solving your own problems using Python and its libraries specifically crafted for machine learning. Here Is A Preview Of What You’ll Learn Here… Basics behind machine learning techniques Different machine learning algorithms Fundamental machine learning applications and their importance Getting started with machine learning in Python, installing and starting SciPy Loading data and importing different libraries Data summarization and data visualization Evaluation of machine learning models and making predictions Most commonly used machine learning algorithms, linear and logistic regression, decision trees support vector machines, k-nearest neighbors, random forests Solving multi-clasisfication problems Data visualization with Matplotlib and data transformation with Pandas and Scikit-learn Solving multi-label classification problems And much, much more... Get this book NOW and learn more about Machine Learning with Python!

**Practical Data Science with Jupyter**

Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter (English Edition)

#### by **Prateek Gupta**

- Publisher : BPB Publications
- Release : 2021-03-01
- Pages : 360
- ISBN : 9389898064
- Language : En, Es, Fr & De

Solve business problems with data-driven techniques and easy-to-follow Python examples KEY FEATURES ● Essential coverage on statistics and data science techniques. ● Exposure to Jupyter, PyCharm, and use of GitHub. ● Real use-cases, best practices, and smart techniques on the use of data science for data applications. DESCRIPTION This book begins with an introduction to Data Science followed by the Python concepts. The readers will understand how to interact with various database and Statistics concepts with their Python implementations. You will learn how to import various types of data in Python, which is the first step of the data analysis process. Once you become comfortable with data importing, you will clean the dataset and after that will gain an understanding about various visualization charts. This book focuses on how to apply feature engineering techniques to make your data more valuable to an algorithm. The readers will get to know various Machine Learning Algorithms, concepts, Time Series data, and a few real-world case studies. This book also presents some best practices that will help you to be industry-ready. This book focuses on how to practice data science techniques while learning their concepts using Python and Jupyter. This book is a complete answer to the most common question that how can you get started with Data Science instead of explaining Mathematics and Statistics behind the Machine Learning Algorithms. WHAT YOU WILL LEARN ● Rapid understanding of Python concepts for data science applications. ● Understand and practice how to run data analysis with data science techniques and algorithms. ● Learn feature engineering, dealing with different datasets, and most trending machine learning algorithms. ● Become self-sufficient to perform data science tasks with the best tools and techniques. WHO THIS BOOK IS FOR This book is for a beginner or an experienced professional who is thinking about a career or a career switch to Data Science. Each chapter contains easy-to-follow Python examples. TABLE OF CONTENTS 1. Data Science Fundamentals 2. Installing Software and System Setup 3. Lists and Dictionaries 4. Package, Function, and Loop 5. NumPy Foundation 6. Pandas and DataFrame 7. Interacting with Databases 8. Thinking Statistically in Data Science 9. How to Import Data in Python? 10. Cleaning of Imported Data 11. Data Visualization 12. Data Pre-processing 13. Supervised Machine Learning 14. Unsupervised Machine Learning 15. Handling Time-Series Data 16. Time-Series Methods 17. Case Study-1 18. Case Study-2 19. Case Study-3 20. Case Study-4 21. Python Virtual Environment 22. Introduction to An Advanced Algorithm - CatBoost 23. Revision of All Chapters’ Learning

**Python for Data Analysis**

A Practical Guide You Can't Miss to Master Data Using Python. Key Tools for Data Science, Introducing You Into Data Manipulation, Data Visualization, Machine Learning.

#### by **Erick Thompson**

- Publisher : Unknown Publisher
- Release : 2020-09-18
- Pages : 118
- ISBN : 9876543210XXX
- Language : En, Es, Fr & De

Do you want to master data using python? If yes, then keep reading! Data analysis plays a significant job in numerous parts of your regular day to day existence today. From the second you wake up, you cooperate with information at various levels. A great deal of significant choices are made dependent on information examination. None of the organizations would capacity and run effectively without individuals who realize how to utilize ace this incredible asset. Organizations use information to Understand Their Customer Needs and produce the Best Possible Product or Service. Python Programming Language is one of the best framework with regards to information examination, and in the event that you are considering starting your own business some time or another or as of now have one, this is certainly a device you should comprehend and utilize. Data Scientist is the most requested job of the 21st century and Python is the most popular programming language of the 21st century. The average salary of a Data Scientist is around 120 thousand dollars per year and the average salary of a Pythton Developer is around 100 thousand dollars. So it's pretty obvious that anyone have skills in both Data Science and Python will be in great demand in industry. You needn't bother with an exhausting and costly reading material. This book is the best one for every readers. This book covers: Introduction to Python and data analysis Python basics Python history Installing Python Data analysis with Python NumPy for numerical data processing Data visualization with Python Machine learning with Python And much more! This guidebook will be the ideal companion and device for your requirements. You will find that we will discuss the entirety of the topics that you have to know with regards to working with data analysis and data science in no time. Many companies want to find ways to get ahead of their competition and provide the best options to their customers all at the same time. Furthermore, they need to ensure that they are settling on the absolute best choices that you need so as to excel in your opposition. Be it Data Processing, Data Analytics, Data Modeling, Data Visualization, Data Predictive, Machine Learning, or taking the photo of Blackhole: Python is everywhere and it is the most powerful programming language of 21st century. Beloved by the data scientists and new generation developers, Pyhton will eat the word! Ready to get started? Click "Buy Now"!