Download Wearable Bioelectronics Ebook PDF

Wearable Bioelectronics

Wearable Bioelectronics
A Book

by Anthony P.F. Turner,Alberto Salleo,Onur Parlak

  • Publisher : Elsevier
  • Release : 2019-11-26
  • Pages : 238
  • ISBN : 0081024088
  • Language : En, Es, Fr & De
GET BOOK

Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin Examines and discusses the future of wearable bioelectronics Addresses the wearable electronics market as a development of the healthcare industry

Stretchable Bioelectronics for Medical Devices and Systems

Stretchable Bioelectronics for Medical Devices and Systems
A Book

by John A. Rogers,Roozbeh Ghaffari,Dae-Hyeong Kim

  • Publisher : Springer
  • Release : 2016-03-31
  • Pages : 314
  • ISBN : 3319286943
  • Language : En, Es, Fr & De
GET BOOK

This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

Wearable Devices

Wearable Devices
the Big Wave of Innovation

by Noushin Nasiri

  • Publisher : BoD – Books on Demand
  • Release : 2019-12-04
  • Pages : 144
  • ISBN : 1789844967
  • Language : En, Es, Fr & De
GET BOOK

Wearable technologies are equipped with microchips and sensors capable of tracking and wirelessly communicating information in real time. With innovations on the horizon, the future of wearable devices will go beyond answering calls or counting our steps to providing us with sophisticated wearable gadgets capable of addressing fundamental and technological challenges. This book investigates the development of wearable technologies across a range of applications from educational assessment to health, biomedical sensing, and energy harvesting. Furthermore, it discusses some key innovations in micro/nano fabrication of these technologies, their basic working mechanisms, and the challenges facing their progress.

Wearable Energy Storage Devices

Wearable Energy Storage Devices
A Book

by Allibai Mohanan Vinu Mohan

  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2021-10-25
  • Pages : 140
  • ISBN : 150151492X
  • Language : En, Es, Fr & De
GET BOOK

Flexible and stretchable energy storage devices are increasingly being needed for a wide variety of applications such as wearable electronics, electronic papers, electronic skins, smart clothes, bendable smart phones and implantable medical devices. Wearable Energy Storage Devices discusses flexible and stretchable supercapacitors and batteries, stretchable and self-healing gel electrolytes, and hybrid wearable energy storage-harvesting devices.

Tailoring Conducting Polymer Interface for Sensing and Biosensing

Tailoring Conducting Polymer Interface for Sensing and Biosensing
A Book

by Lingyin Meng

  • Publisher : Linköping University Electronic Press
  • Release : 2020-09-17
  • Pages : 82
  • ISBN : 9179298001
  • Language : En, Es, Fr & De
GET BOOK

The routine measurement of signi?cant physiological and biochemical parameters has become increasingly important for health monitoring especially in the cases of elderly people, infants, patients with chronic diseases, athletes and soldiers etc. Monitoring is used to assess both physical fitness level and for disease diagnosis and treatment. Considerable attention has been paid to electrochemical sensors and biosensors as point-of-care diagnostic devices for healthcare management because of their fast response, low-cost, high specificity and ease of operation. The analytical performance of such devices is significantly driven by the high-quality sensing interface, involving signal transduction at the transducer interface and efficient coupling of biomolecules at the transducer bio-interface for specific analyte recognition. The discovery of functional and structured materials, such as metallic and carbon nanomaterials (e.g. gold and graphene), has facilitated the construction of high-performance transducer interfaces which benefit from their unique physicochemical properties. Further exploration of advanced materials remains highly attractive to achieve well-designed and tailored interfaces for electrochemical sensing and biosensing driven by the emerging needs and demands of the “Internet of Things” and wearable sensors. Conducting polymers (CPs) are emerging functional polymers with extraordinary redox reversibility, electronic/ionic conductivity and mechanical properties, and show considerable potential as a transducer material in sensing and biosensing. While the intrinsic electrocatalytic property of the CPs is limited, especially for the bulk polymer, tailoring of CPs with controlled structure and efficient dopants could improve the electrochemical performance of a transducer interface by delivering a larger surface area and enhanced electrocatalytic property. In addition, the rich synthetic chemistry of CPs endows them with versatile functional groups to modulate the interfacial properties of the polymer for effective biomolecule coupling, thus bridging organic electronics and bioelectrochemistry. Moreover, the soft-material characteristics of CPs enable their use for the development of flexible and wearable sensing platforms which are inexpensive and light-weight, compared to conventional rigid materials, such as carbons, metals and semiconductors. This thesis focuses on the exploration of CPs for electrochemical sensing and biosensing with improved sensitivity, selectivity and stability by tailoring CP interfaces at different levels, including the CP-based transduction interface, CP-based bio-interface and CP-based device interface. First, we demonstrate different strategies for tailoring the physicochemical properties of poly (3,4-ethylenedioxythiophene) (PEDOT) beyond its intrinsic properties, via charge effects, structural effects and by the use of hybrid materials, as a CP-based transduction interface to improve sensing performance of various analytes. 1) A positively-charged PEDOT interface, and a negatively-charged carboxylic-acid-functionalised PEDOT (PEDOT:COOH) interface were developed to modulate the electrode kinetics for oppositely-charged analytes, e.g. negatively-charged nicotinamide adenine dinucleotide (NADH) and positively-charged dopamine (DA), respectively. These interfaces displayed high sensitivity and wide linear range towards the analytes due to the electrostatic attraction effect. 2) Various structured PEDOT including porous microspheres and nanofibres were synthesised via hard-template and soft-template methods, respectively, and were employed as building blocks for a hierarchical PEDOT and 3D nanofibrous PEDOT transduction interface, that facilitated signal transduction for NADH. 3) A PEDOT hybrid material interface was developed via using a novel bi-functional graphene oxide derivative with high reduction degree and negatively-charged sulphonate terminal functionality (S-RGO) as dopant to create PEDOT:S-RGO which delivered an enhanced electrochemical performance for various analytes. Based on the established CP-based transduction interface, biomolecules (e.g. enzymes) could be coupled to the CP surface to create CP-based bio-interfaces for biosensing. The immobilisation of enzyme was realised via either covalent bonding to a PEDOT derivative bearing a -COOH group (PEDOT-COOH) through EDC/NHS chemistry, or by physical absorption into the 3D porous PEDOT structure. The CP-based bio-interfaces were used to demonstrate the stable immobilisation of two different types of enzymes, i.e. lactate dehydrogenase and lactate oxidase, achieving the biosensing of analytes by relay bioelectrochemical signal transduction. Together, CP was employed as the CP-based device interface for the fabrication of a flexible and wearable biosensing device. A 3D honeycomb-structured graphene network was generated in-situ on a flexible polyimide surface by mask-free patterning using laser irradiation. The substrate was then reinforced with PEDOT as a polymeric binder to stabilise the 3D porous network by adhesion and binding, thus minimising the delamination of the biosensing interface under deformation and enhancing the mechanical behaviours for use in flexible and wearable devices. The subsequent nanoscale-coating of Prussian blue and immobilisation of enzyme into the 3D porous network provided a flexible platform for wearable electrochemical biosensors to detect lactate in sweat. Rutinmässig övervakning av hälsorelaterade fysiologiska och biokemiska parametrar har blivit allt viktigare för ett stort antal människor bland annat seniorer, spädbarn, patienter med kroniska sjukdomar, idrottare, soldater och med flera, på både en fysisk nivå för förebyggande av sjukdomar samt på en medicinsk nivå för diagnos och behandling av sjukdomar. Stor uppmärksamhet har lagts på utveckling av elektrokemiska sensorer och biosensorer som point-of-care (PoC) diagnostiska enheter for rutinmässig sjukvårdsledning genom deras snabba svar, låga kostnad, höga specificitet och enkla drift. Deras analytiska funktioner drivs av avkänningsgranssnittet vilket involverar signaltransduktion vid transducer-gränssnittet och effektiv koppling av biomolekyler till transducer-biogränssnittet för specifik analytigenkänning. Upptäckten av konventionella funktionella och strukturerade material, t.ex. metalliska nanopartiklar, kolnanorör och grafen, har underlättat konstruktionen av transducergränssnitt med hög prestanda på grund av deras unika fysiokemiska egenskaper. Ytterligare forskning av avancerade material ar önskvärt for att uppnå ett väldesignat och skräddarsytt gränsnitt for elektrokemisk avkänning och biosensering for Internet of Things och klädd sensorer. Ledande polymerer (LP) ar en typ av nya funktionella polymerer med extraordinär redoxomvändbarhet, elektronisk/jonisk ledningsförmåga och mekaniska egenskaper, som uppvisar betydande potential som ett givarmaterial vid avkänning och biosensering. Medan de inneboende elektrokatalytiska egenskaperna i LP:er är begränsade, speciellt for den skrymmande polymeren, kan skräddarsydda LP:er med kontrollerad struktur och effektiva dopmedel förbättra den elektrokemiska prestandan hos ett givargränssnitt med större ytarea och förbättrade elektrokatalytiska egenskaper. Dessutom ger den syntetiska kemin LP:er

Low-power Wearable Healthcare Sensors

Low-power Wearable Healthcare Sensors
A Book

by R. Simon Sherratt ,Nilanjan Dey

  • Publisher : MDPI
  • Release : 2020-12-29
  • Pages : 146
  • ISBN : 3039364790
  • Language : En, Es, Fr & De
GET BOOK

Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors.

Wearable Physical, Chemical and Biological Sensors

Wearable Physical, Chemical and Biological Sensors
Fundamentals, Materials and Applications

by Eden Morales-Narvaez,Can Dincer

  • Publisher : Elsevier
  • Release : 2022-02-25
  • Pages : 328
  • ISBN : 012823234X
  • Language : En, Es, Fr & De
GET BOOK

Wearable Physical, Chemical and Biological Sensors introduces readers of all backgrounds—chemistry, electronics, photonics, biology, microfluidics, materials, and more—to the fundamental principles needed to develop wearable sensors for a host of different applications. The capability to continuously monitor organ-related biomarkers, environmental exposure, movement disorders, and other health conditions using miniaturized devices that operate in real time provides numerous benefits, such as avoiding or delaying the onset of disease, saving resources allocated to public health, and making better decisions on medical diagnostics or treatment. Worn like glasses, masks, wristwatches, fitness bands, tattoo-like devices, or patches, wearables are being boosted by the Internet of Things in combination with smart mobile devices. Besides, wearables for smart agriculture are also covered. Written by experts in their respective fields, Wearable Physical, Chemical and Biological Sensors provides insights on how to design, fabricate, and operate these sensors. Provides a holistic view of the field, covering physical, chemical, and biosensing approaches along with the advantages of their various functionalities Covers all necessary elements for developing wearable sensors, including materials, biorecognition elements, transductions systems, signal amplification strategies, and system design considerations Each chapter includes examples, summaries, and references for further reading

Flexible and Stretchable Electronics

Flexible and Stretchable Electronics
Materials, Design, and Devices

by Run-Wei Li,Gang Liu

  • Publisher : CRC Press
  • Release : 2019-10-31
  • Pages : 392
  • ISBN : 0429608209
  • Language : En, Es, Fr & De
GET BOOK

With the recently well developed areas of Internet of Thing, consumer wearable gadgets and artificial intelligence, flexible and stretchable electronic devices have spurred great amount of interest from both the global scientific and industrial communities. As an emerging technology, flexible and stretchable electronics requires the scale-span fabrication of devices involving nano-features, microstructures and macroscopic large area manufacturing. The key factor behind covers the organic, inorganic and nano materials that exhibit completely different mechanical and electrical properties, as well as the accurate interfacial control between these components. Based on the fusion of chemistry, physics, biology, materials science and information technology, this review volume will try to offer a timely and comprehensive overview on the flexible and stretchable electronic materials and devices. The book will cover the working principle, materials selection, device fabrication and applications of electronic components of transistors, solar cells, memories, sensors, supercapacitors, circuits and etc.

Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics

Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics
A Book

by Xing Fan,Nannan Zhang,Yi Wang

  • Publisher : John Wiley & Sons
  • Release : 2021-10-20
  • Pages : 384
  • ISBN : 3527818227
  • Language : En, Es, Fr & De
GET BOOK

Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics Discover state-of-the-art developments in textile-based wearable and stretchable electronics from leaders in the field In Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics, renowned researchers Professor Xing Fan and his co-authors deliver an insightful and rigorous exploration of textile-based energy harvesting and storage systems. The book covers the principles of smart fibers and fabrics, as well as their fabrication methods. It introduces, in detail, several fiber- and fabric-based energy harvesting and storage devices, including photovoltaics, piezoelectrics, triboelectrics, supercapacitors, batteries, and sensing and self-powered electric fabrics. The authors also discuss expanded functions of smart fabrics, like stretchability, hydrophobicity, air permeability and color-changeability. The book includes sections on emerging electronic fibers and textiles, including stress-sensing, strain-sensing, and chemical-sensing textiles, as well as emerging self-powered electronic textiles. Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics concludes with an in-depth treatment of upcoming challenges, opportunities, and commercialization requirements for electronic textiles, providing valuable insight into a highly lucrative new commercial sector. The book also offers: A thorough introduction to the evolution from classical functional fibers to intelligent fibers and textiles An exploration of typical film deposition technologies, like dry-process film deposition and wet-process technologies for roll-to-roll device fabrication Practical discussions of the fabrication process of intelligent fibers and textiles, including the synthesis of classical functional fibers and nano/micro assembly on fiber materials In-depth examinations of energy harvesting and energy storage fibers, including photovoltaic, piezoelectric, and supercapacitor fibers Perfect for materials scientists, engineering scientists, and sensor developers, Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics is also an indispensable resource for electrical engineers and professionals in the sensor industry seeking a one-stop reference for fiber- and fabric-based energy harvesting and storage systems for wearable and stretchable power sources.

Wearable Systems Based Gait Monitoring and Analysis

Wearable Systems Based Gait Monitoring and Analysis
A Book

by Shuo Gao

  • Publisher : Springer Nature
  • Release : 2022
  • Pages : 129
  • ISBN : 3030973328
  • Language : En, Es, Fr & De
GET BOOK

Applications of Advanced Green Materials

Applications of Advanced Green Materials
A Book

by Shakeel Ahmed

  • Publisher : Woodhead Publishing
  • Release : 2020-10-22
  • Pages : 804
  • ISBN : 0128209380
  • Language : En, Es, Fr & De
GET BOOK

Applications of Advanced Green Materials provides a comprehensive and authoritative review on recent advancement in green materials in various applications. Each chapter is focused on a specific application of advanced green materials from packaging to sensor technology, biomedical to environmental applications, textile to catalysis to electronic shielding applications, supercapacitors, drug delivery, tissue engineering, bioelectronic, gas storage and separation, etc. This book also discusses life cycle assessment and circular economy of green materials and their future prospective. The book is unique with contributions from renowned scientists working on biopolymers and biocomposites, bioactive and biodegradable materials, composites, and metallic natural materials. This book is an essential resource for academicians, researchers, students and professionals interested in exploring potential of advanced green materials. Includes up to date information on applications of advanced green materials Each chapter is specifically discussing a particular application with examples Present a unified approach to discuss in detail about origin, synthesis and application of green materials

Wearable Sensors

Wearable Sensors
Fundamentals, Implementation and Applications

by Edward Sazonov

  • Publisher : Academic Press
  • Release : 2020-11-20
  • Pages : 660
  • ISBN : 012819247X
  • Language : En, Es, Fr & De
GET BOOK

Wearable Sensors: Fundamentals, Implementation and Applications has been written by a collection of experts in their field, who each provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a fantastic addition to the library of any engineers working in this field. Wearable Sensors covers a wide variety of topics associated with development and applications of wearable sensors. It also provides an overview and a coherent summary of many aspects of wearable sensor technology. Both professionals in industries and academic researchers need this package of information in order to learn the overview and each specific technology at the same time. This book includes the most current knowledge on the advancement of light-weight hardware, energy harvesting, signal processing, and wireless communications and networks. Practical problems with smart fabrics, biomonitoring and health informatics are all addressed, plus end user centric design, ethical and safety issues. The new edition is completely reviewed by key figures in the field, who offer authoritative and comprehensive information on the various topics. A new feature for the second edition is the incorporation of key background information on topics to allow the less advanced user access to the field and to make the title more of an auto-didactic book for undergraduates. Provides a full revision of the first edition, providing a comprehensive and up-to-date resource of all currently used wearable devices in an accessible and structured manner Helps engineers manufacture wearable devices with information on current technologies, with a focus on end user needs and recycling requirements This book provides a fully updated overview of the many aspects of wearable sensor technology in one single volume, enabling engineers and researchers to fully comprehend the field and to identify opportunities

Graphene Bioelectronics

Graphene Bioelectronics
A Book

by Ashutosh Tiwari

  • Publisher : Elsevier
  • Release : 2017-11-22
  • Pages : 388
  • ISBN : 0128133503
  • Language : En, Es, Fr & De
GET BOOK

Graphene Bioelectronics covers the expending field of graphene biomaterials, a wide span of biotechnological breakthroughs, opportunities, possibilities and challenges. It is the first book that focuses entirely on graphene bioelectronics, covering the miniaturization of bioelectrode materials, bioelectrode interfaces, high-throughput biosensing platforms, and systemic approaches for the development of electrochemical biosensors and bioelectronics for biomedical and energy applications. The book also showcases key applications, including advanced security, forensics and environmental monitoring. Thus, the evolution of these scientific areas demands innovations in crosscutting disciplines, starting from fabrication to application. This book is an important reference resource for researchers and technologists in graphene bioelectronics—particularly those working in the area of harvest energy biotechnology—employing state-of-the-art bioelectrode materials techniques. Offers a comprehensive overview of state-of-art research on graphene bioelectronics and their potential applications Provides innovative fabrication strategies and utilization methodologies, which are frequently adopted in the graphene bioelectronics community Shows how graphene can be used to make more effective energy harvesting devices

Macro, Micro, and Nano-Biosensors

Macro, Micro, and Nano-Biosensors
Potential Applications and Possible Limitations

by Mahendra Rai,Anatoly Reshetilov,Yulia Plekhanova,Avinash P Ingle

  • Publisher : Springer Nature
  • Release : 2021-01-04
  • Pages : 415
  • ISBN : 3030554902
  • Language : En, Es, Fr & De
GET BOOK

This book includes an international group of researchers who present the latest achievements in the field of enzyme, immune system, and microbial and nano-biosensors. It highlights the experimental evidence for formation of biological fuel cells (BFCs)-which has a dual purpose – as a device that produces electricity and the systems which produce it simultaneously cleaning up the environment from polluting organic compounds. Considering the work in the field of macro, micro and nano-biosensors, considerable attention is paid to the use of nanomaterials for the modification of working electrodes. Nanomaterials in some cases can significantly improve the parameters of analytical systems. Readers will be interested in the projection of the presented theoretical and experimental materials in the field of practical application of modern analytical developments. The presented results in many cases imply the possibility of using the created models of macro, micro and nano-biosensors, and biofuel elements in the field of health, and protection/restoration of the environment. It includes information about all existing types of transducers of signals in biosensors – electrochemical, optical and quantum-optics, thermoelectric, data of atomic force microscopy, piezoelectric, and more. On the basis of these principles, descriptions are given about the functioning of macro, micro and nano- biosensors for the detection of compounds used in medicine, detection of compounds that clog the environment, and thus affect human health, for compounds that are potentially the basis for the production of drugs, for the selection of compounds that have medicinal activity, for immunodetection, and to assess the quality of food. These questions form the basis of research carried out in the field of biosensors in the world. Since the described models of biosensors have high sensitivity, high measurement speed and selectivity, the described results attract the attention of both the ordinary reader and business class specialists who create and implement analytical technologies. This book is very useful for researchers in life sciences, chemical sciences, physics, and engineering. In addition, it will be useful for the persons working in industry. Advanced technologies specialists will be attracted by the novelty of the proposed solutions and their relevance and ease of implementation. Since the studies contain sections describing the parameters of different biosensors, BFCs, they are easily navigated into assessing the effectiveness of the practical use of the proposed device. The relevant sections indicate such characteristics as detection ranges, life span, type of biological material used, the method of formation of the bio-receptor part. These parameters are of interest to both developers of new models of biosensors and BFC, and their manufacturers.

Electrochemical Sensors

Electrochemical Sensors
From Working Electrodes to Functionalization and Miniaturized Devices

by Giuseppe Maruccio,Jagriti Narang

  • Publisher : Woodhead Publishing
  • Release : 2022-01-28
  • Pages : 316
  • ISBN : 0128235993
  • Language : En, Es, Fr & De
GET BOOK

Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices provides an overview of the materials, preparation and fabrication methods for biosensor applications. The book introduces the field of electrochemistry and its fundamentals, also providing a practical overview of working electrodes as key components for the implementation of sensors and assays. Features covered include the prompt transfer of electrons, favorable redox behavior, biocompatibility, and inertness in terms of electrode fouling. Special attention is dedicated to analyzing the various working materials systems for electrodes used in electrochemical cells such as gold, carbon, copper, platinum and metal oxides. This book is suitable for academics and practitioners working in the disciplines of materials science and engineering, analytical chemistry and biomedical engineering. Introduces key concepts for electrochemistry and biosensors Reviews the most common and emerging materials-based electrodes for sensor applications, including gold, carbon, platinum and metal oxides Discusses both macro and miniaturized electrodes, including their cleaning, engineering, fabrication, examples of working biosensors, and advantages and disadvantages

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures
A Book

by Eui-Hyeok Yang,Dibakar Datta,Junjun Ding,Grzegorz Hader

  • Publisher : Elsevier
  • Release : 2020-06-19
  • Pages : 534
  • ISBN : 0128184760
  • Language : En, Es, Fr & De
GET BOOK

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Predicting Heart Failure

Predicting Heart Failure
Invasive, Non-Invasive, Machine Learning, and Artificial Intelligence Based Methods

by Kishor Kumar Sadasivuni,Hassen M. Ouakad,Somaya Al-Maadeed,Huseyin C. Yalcin,Issam Bait Bahadur

  • Publisher : John Wiley & Sons
  • Release : 2022-04-05
  • Pages : 352
  • ISBN : 1119813034
  • Language : En, Es, Fr & De
GET BOOK

PREDICTING HEART FAILURE Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods focuses on the mechanics and symptoms of heart failure and various approaches, including conventional and modern techniques to diagnose it. This book also provides a comprehensive but concise guide to all modern cardiological practice, emphasizing practical clinical management in many different contexts. Predicting Heart Failure supplies readers with trustworthy insights into all aspects of heart failure, including essential background information on clinical practice guidelines, in-depth, peer-reviewed articles, and broad coverage of this fast-moving field. Readers will also find: Discussion of the main characteristics of cardiovascular biosensors, along with their open issues for development and application Summary of the difficulties of wireless sensor communication and power transfer, and the utility of artificial intelligence in cardiology Coverage of data mining classification techniques, applied machine learning and advanced methods for estimating HF severity and diagnosing and predicting heart failure Discussion of the risks and issues associated with the remote monitoring system Assessment of the potential applications and future of implantable and wearable devices in heart failure prediction and detection Artificial intelligence in mobile monitoring technologies to provide clinicians with improved treatment options, ultimately easing access to healthcare by all patient populations. Providing the latest research data for the diagnosis and treatment of heart failure, Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods is an excellent resource for nurses, nurse practitioners, physician assistants, medical students, and general practitioners to gain a better understanding of bedside cardiology.

Molecular Architectonics and Nanoarchitectonics

Molecular Architectonics and Nanoarchitectonics
A Book

by Thimmaiah Govindaraju,Katsuhiko Ariga

  • Publisher : Springer Nature
  • Release : 2021-10-27
  • Pages : 548
  • ISBN : 9811641897
  • Language : En, Es, Fr & De
GET BOOK

This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists.

Advanced Biosensors for Virus Detection

Advanced Biosensors for Virus Detection
Smart Diagnostics to Combat SARS-CoV-2

by Raju Khan,Arpana Parihar,Ajeet Kumar Kaushik,Ashok Kumar

  • Publisher : Academic Press
  • Release : 2022-03-10
  • Pages : 476
  • ISBN : 0323859895
  • Language : En, Es, Fr & De
GET BOOK

Advanced Biosensors for Virus Detection: Smart Diagnostics to Combat Against the SARS-CoV2 Pandemic covers the development of biosensor-based approaches for the diagnosis and prognosis of viral infections, specifically coronaviruses. The book discusses wide-ranging topics of available biosensor-based technologies and their application for early viral detection. Sections cover the emergence of SARS-CoV, MERS-CoV and SARS-CoV2, the global health response, the impact on affected populations, state-of-the art biomarkers, and risk factors. Specific focus is given to COVID-19, with coverage of genomic profiling, strain variation and the pathogenesis of SARS-CoV2. In addition, current therapeutics, nano-abled advancements and challenges in the detection of SARS-CoV2 and COVID-19 management are discussed, along with the role of nanomaterials in the development of biosensors and how biosensors can be scaled up for clinical applications and commercialization. Deals with biosensors-based approaches that could be exploited to design and develop high throughput, rapid and cost-effective diagnostics technologies for the early detection of viral infections Illustrates the development of multiplexed, miniaturized analytical systems for point-of-care applications Provides information about fabrication protocols for various biosensor based diagnostic approaches that could be directly implemented to develop a novel biosensor Includes the past, present and future status of biosensors, along with information about biosensors currently under clinical trials

Supramolecular Gels

Supramolecular Gels
Materials and Emerging Applications

by Tifeng Jiao

  • Publisher : John Wiley & Sons
  • Release : 2021-07-20
  • Pages : 272
  • ISBN : 3527817018
  • Language : En, Es, Fr & De
GET BOOK

Supramolecular Gels Discover a current and authoritative overview of the cutting-edge in supramolecular gels from a leading voice in the field A promising new class of materials shows potential and is receiving increasing attention as an intelligent material for multifunctional systems. In a work that is sure to be of great interest to a wide variety of researchers, chemists, and engineers, Supramolecular Gels: Materials and Emerging Applications delivers an application-oriented and focused book exploring the most recent applications of supramolecular gels. This interdisciplinary book presents the underlying fundamentals of supramolecular gels before discussing their assembly mechanisms and structures. It also introduces different material systems, including composite supramolecular gels, organogels, hydrogels, self-healing, and graphene-based supramolecular gels. The book discusses current and emerging applications of these materials in devices like sensors and actuators, biomedical tools, and environmental applications. The distinguished author also offers valuable insights with respect to the design and character of brand-new versatile soft materials. Readers will also benefit from the inclusion of: A thorough introduction to the fundamentals of supramolecular gels, including their formation, classification, self-assembly, and mechanisms An exploration of supramolecular chirality and regulation in gel structures, as well as self-assembly and environmental applications of composite supramolecular gels Practical discussions of fluorescent organogels and hydrogels and their applications in analyte sensing An examination of self-healing and graphene-based supramolecular gels, and supramolecular gels for sensors and actuators Perfect for materials scientists, organic chemists, biochemists, catalytic chemists, and environmental chemists, Supramolecular Gels: Materials and Emerging Applications will also earn a place in the libraries of sensor developers and other professionals seeking a one-stop reference for this rapidly developing category of intelligent materials.